Matemáticas, pregunta formulada por valentinfioretti10, hace 5 meses

Juan pagó $550 por 3 lapiceras y 5 borratintas.Ana compró 5 lapiceras y 7
borratintas y tuvo que pagar $730. ¿Cuál es el precio de cada lapicera y de cada
borratinta?

Respuestas a la pregunta

Contestado por MichaelSpymore1
14

Respuesta: Cada lapicera vale -$50 y cada borratinta vale $140✔️

[Nota: El resultado es matemáticamente correcto de acuerdo con el enunciado, pero es ilógico que el precio de algo sea negativo]

Explicación paso a paso:

Con la información que nos proporcionan en el enunciado, tenemos que establecer las ecuaciones necesarias para resolver las incógnitas. Tenemos dos incógnitas (precio de cada lapicera y cada borratinta), así que necesitaremos al menos dos ecuaciones:

Llamemos L y B a los precios de 1 lapicera y 1 borratinta respectivamente.

Nos dicen que Juan pagó $550 por 3 lapiceras y 5 borratintas.

Expresando esto algebraicamente tenemos:

3L + 5B = $550} Ecuación 1

Nos dicen que Ana compró 5 lapiceras y 7 borratintas y pagó $730.  

Expresando esto algebraicamente tenemos:

5L + 7B = $730} Ecuación 2

Vamos a resolver este sistema por el método de reducción:

Para resolver un sistema de ecuaciones por el método de reducción, tenemos que efectuar operaciones aritméticas entre las dos ecuaciones de tal manera que eliminemos una de las dos incógnitas.

En este caso decidimos eliminar la incógnita "B"

Vemos que el coeficiente de B en la primera ecuación es 5 y el coeficiente de B en la segunda ecuación es 7

Entonces si multiplicamos todos los términos de la primera ecuación por 7 y todos los términos de la segunda ecuación por 5 tendremos:

7❌{3L + 5B = $550} Ecuación 1 → {21L + 35B = $3850} Ecuación 1

5❌{5L + 7B = $730} Ecuación 2 → {25L + 35B = $3650} Ecuación 2

Ahora el coeficiente de "B" en las dos ecuaciones es el mismo, luego si restamos la ecuación 2 de la ecuación 1, eliminaremos la incógnita "B":

{21L + 35B = $3850} Ecuación 1

{25L + 35B = $3650} Ecuación 2

21L - 25L + 35B - 35B = $3850 - $3650  

-4L = $200

L = -$200/4 = -$50 ya sabemos la incógnita "L"

Hay un inconveniente. de acuerdo con los datos del enunciado el precio de cada lapicera sería negativo, lo que no resulta lógico, pero matemáticamente resuelve el problema

Ahora sustituyendo este valor en cualquiera de las dos ecuaciones calculamos "B"

3L + 5B = $550 } Ecuación 1

3(-$50) + 5B = $550

-$150 + 5B = $550

5B = $550 + $150 = $700

B = $700/5 = $140 ya sabemos la incógnita "B"

Respuesta: Cada lapicera vale -$50 y cada borratinta vale $140✔️

[Nota: El resultado es matemáticamente correcto de acuerdo con el enunciado, pero es ilógico que el precio de algo sea negativo]

Verificar:

Comprobamos que nuestra solución resuelve el problema enunciado:

Nos dicen que Juan pagó $550 por 3 lapiceras y 5 borratintas.

3 lapiceras valen: 3 x -$50 = -$150

5 borratintas valen: 5 x $140 = $700

Total: -$150 + $700 = $550✔️comprobada ecuación 1

Nos dicen que Ana compró 5 lapiceras y 7 borratintas y pagó $730.

5 lapiceras valen: 5 x -$50 = -$250

7 borratintas valen: 7 x $140 = $980

Total: -$250 + $980 = $730✔️comprobada  ecuación 2

[Nota: El resultado es matemáticamente correcto de acuerdo con el enunciado, pero es ilógico que el precio de algo sea negativo]

Para saber más: https://brainly.lat/tarea/769055

Para saber más: https://brainly.lat/tarea/14893641

Para saber más: https://brainly.lat/tarea/15640161  

Para saber más: https://brainly.lat/tarea/35189026  

Para saber más: https://brainly.lat/tarea/35284134  

Para saber más: https://brainly.lat/tarea/46946334

Michael Spymore

Otras preguntas