Matemáticas, pregunta formulada por sb923476, hace 4 meses

jose compro 2 camisas y 3 pantalones y pago $1,470.00 si juan compro en la misma tienda 3 camisas y 2 pantalones y pago $1,330.00​

Respuestas a la pregunta

Contestado por crocks71
1

Respuesta:

El pantalón vale $ 350,00 y la camisa vale  $ 210,00

Explicación paso a paso:

Hola.

Es un sistema de ecuaciones, que se resuelve así:

Dos camisas de un precio "x" mas  3 pantalones de un precio "y" cuestan 1470.

Y 3 camisas de un precio "x" mas 2 pantalones de un precio "y" cuestan 1330.

Como podemos observar el precio aumenta en presencia de los pantalones, entonces, estos últimos, deben valer mas que las camisas.

2x + 3y = 1470  (1)

3x + 2y = 1330 (2)

Entonces, podemos resolverlo por cualquier método, en mi caso elegí igualación.

x = 1470 - 3y / 2

x = 1330 - 2y/ 3

Igualando...

1470 - 3y / 2 =  1330 - 2y/ 3

3(1470 - 3y) = 2(1330 -2y)

4410 - 9y = 2660 - 4y

-9y + 4y = 2660 - 4410

-5 y = -1750

y = -1750 / -5

y = 350

Cada pantalón cuesta $ 350,00

Como ya tenemos el precio de cada pantalón es fácil sacar el precio de cada camisa...

x = 1470 - 3y / 2

(sustituimos "y", ya que conocemos el valor del pantalón)

x = 1470 - 3(350) / 2

x =1470 - 1050 / 2

x =420 / 2

x = 210.

La camisa vale $210,00 la deducción era correcta.

Saludos.

Otras preguntas