jerarquía de las operaciones matemáticas que son u ejemplos
porfa es para ahora mismo
Respuestas a la pregunta
Contestado por
1
En matemáticas, la jerarquía de operaciones se refiere al orden en que se deben realizar las operaciones matemáticas. Imaginemos la siguiente situación:
2 + 3 x 4 - 5 ÷ 5
Podríamos hacer el siguiente cálculo:
primero sumamos 2 + 3, luego multiplicamos por 4, a eso le restamos 5, y finalmente dividimos por 5.
O podríamos sumar 2 más 3, restar 4 y 5, multiplicar eso resultado y dividir al final por 5.
Las operaciones matemáticas se realizan de la siguiente forma:
Los cálculos se hacen de izquierda a derecha.
Si hay paréntesis u otros signos de agrupación, se realizan primero esas operaciones.
El siguiente orden es resolver los exponentes.
El próximo paso es evaluar las multiplicaciones y divisiones.
Finalmente se realizan las sumas y restas indicadas.
Para recordar el orden de las operaciones, nos podemos valer de una regla mnemotécnica PEMDAS: Paréntesis, Exponentes, Multiplicaciones/Divisiones, Adiciones/Sustracciones.
Signos de agrupación en la jerarquía de operaciones
Los signos de agrupación indican que las operaciones dentro de ellos se realizan en primer lugar. Estos son:
paréntesis ( )
corchete [ ]
llaves { }
Las barras de fracciones —, las barras de valores absolutos | | y el símbolo de raíz √ también califican como signos de agrupación.
Por ejemplo, 5 x (3 + 4), esto indica que primero tenemos que sumar lo que está dentro del paréntesis y luego ese resultado se multiplica por 5:
5 x (3 + 4) = 5 x (7)= 5 x 7= 35
Cuando aparecen varios signos de agrupación, el orden de resolución es el siguiente: primero los paréntesis, seguido de corchetes y al final las llaves, es decir desde adentro hacia afuera.
{[(3+4) + (4-3)] x (2 + 1)}
Primero resolvemos las operaciones dentro de los paréntesis:
{[7 + 1]x 3}
Luego, se resuelven las operaciones dentro de los corchetes:
{[7+1] x 3}= {8 x 3}
Finalmente, se desarrollan las llaves:
{ 8 x 3 } = 24
Ejemplo
fracción numerador negrita 7 negrita más negrita 5 entre denominador negrita 3 negrita más negrita 1 fin fracción
En este caso tenemos una barra de fracción, asi que realizamos las operaciones sobre y bajo la barra primero:
7+ 5 = 12 y 3 + 1 = 4, nos queda la fracción 12/4 que es igual a 3:
fracción negrita 12 entre negrita 4 negrita igual negrita 3
Operaciones de suma y resta en que no hay signos de agrupación
En este caso se realizan las operaciones en el orden que se presentan:
5 + 3 - 4 + 2 - 6 + 2 ⇒
5 + 3 = 8,
8 - 4 = 4,
4 + 2 = 6,
6 - 6 = 0,
0 + 2 = 2
Ejemplo
1) 32-19+40-20+30-50
Hacemos las operaciones paso por paso:
32-19=13,
13+40=53,
53-20=33,
33+30=63,
63-50=13
2) 60-40+108-104+320-133-45
Hacemos las operaciones paso a paso:
60 - 40 = 20,
20 + 108 = 128,
128 - 104 = 24,
24 + 320 = 344,
344 - 133 = 211,
211 - 45 = 166.
Operaciones de suma y resta en que hay signos de agrupación
Se realizan primero las operaciones dentro de los paréntesis hasta que sólo queda un número:
678 - [(34 + 28) + (73 - 15) - (12 + 43)]⇒
34 + 28 = 62, 73 - 15 = 58, 12 + 43 = 55,
luego se resuelven las operaciones dentro del corchete:
62 + 58 = 120, 120 -55 = 65,
Finalmente se realiza el resto de las operaciones;
678 - 65 = 613.
Operaciones de multiplicación en que no hay signos de agrupación
Cuando no hay signos de agrupación, se realizan primero las multiplicaciones, seguido de las sumas y las restas:
3 x 4 + 5 x 6 ⇒
3 x 4 = 12, 5 x 6 = 30,
12 + 30 = 42
Ejemplo
15 - 5 x 3 + 4, primero se realiza la multiplicación:
5 x 3 = 15;
luego las sumas y las restas en el orden que aparecen:
15 -15 + 4 ⇒15 - 15 = 0,
0 + 4 = 4.
Operaciones de multiplicación con signos de agrupación
En estos casos se realizan primero las operaciones encerradas en los signos de agrupación, y luego las operaciones indicadas:
(5 - 2) 3 + 6 (4 - 1) ⇒ las operaciones dentro de los paréntesis:
5 - 2 = 3,
4 - 1 = 3;
ahora se realizan las multiplicaciones correspondientes:
(3 )3 = 9 y 6 (3) = 18; finalmente se suman los dos términos obtenidos:
9+18= 27
Ejemplo
(20 - 5 + 2)(16 - 3 + 2 - 1)⇒ 20 - 5 = 15, 15 + 2 = 17;
16 - 3 = 13, 13 + 2 = 15, 15 - 1 =14;
luego multiplicamos los resultados obtenidos de los paréntesis:
17 x 14=238
Operaciones de división o multiplicación en que no hay signos de agrupación
En estos casos se realizan primero las divisiones y multiplicaciones, y luego las sumas y restas:
12 ÷ 3 x 4 ÷ 2 x 6; las divisiones son 12 ÷ 3 = 4 y 4 ÷ 2 = 2;
luego la expresión queda como 4 x 2 x 6 = 48.
Ejemplo
10 ÷ 5 + 4 - 16 ÷ 8 - 2 + 4 ÷ 4 - 1⇒ primero realizamos las divisiones:
10 ÷5 = 2, 16 ÷ 8 = 2, 4 ÷ 4 = 1;
continuamos las operaciones indicadas en orden: 2 + 4 - 2 - 2 + 1 - 1
2 + 4 = 6, 6 - 2 = 4, 4 - 2 = 2, 2 + 1 = 3, 3 - 1 = 2.
La respuesta final a 10 ÷ 5 + 4 - 16 ÷ 8 - 2 + 4 ÷ 4 - 1 es 2.
2 + 3 x 4 - 5 ÷ 5
Podríamos hacer el siguiente cálculo:
primero sumamos 2 + 3, luego multiplicamos por 4, a eso le restamos 5, y finalmente dividimos por 5.
O podríamos sumar 2 más 3, restar 4 y 5, multiplicar eso resultado y dividir al final por 5.
Las operaciones matemáticas se realizan de la siguiente forma:
Los cálculos se hacen de izquierda a derecha.
Si hay paréntesis u otros signos de agrupación, se realizan primero esas operaciones.
El siguiente orden es resolver los exponentes.
El próximo paso es evaluar las multiplicaciones y divisiones.
Finalmente se realizan las sumas y restas indicadas.
Para recordar el orden de las operaciones, nos podemos valer de una regla mnemotécnica PEMDAS: Paréntesis, Exponentes, Multiplicaciones/Divisiones, Adiciones/Sustracciones.
Signos de agrupación en la jerarquía de operaciones
Los signos de agrupación indican que las operaciones dentro de ellos se realizan en primer lugar. Estos son:
paréntesis ( )
corchete [ ]
llaves { }
Las barras de fracciones —, las barras de valores absolutos | | y el símbolo de raíz √ también califican como signos de agrupación.
Por ejemplo, 5 x (3 + 4), esto indica que primero tenemos que sumar lo que está dentro del paréntesis y luego ese resultado se multiplica por 5:
5 x (3 + 4) = 5 x (7)= 5 x 7= 35
Cuando aparecen varios signos de agrupación, el orden de resolución es el siguiente: primero los paréntesis, seguido de corchetes y al final las llaves, es decir desde adentro hacia afuera.
{[(3+4) + (4-3)] x (2 + 1)}
Primero resolvemos las operaciones dentro de los paréntesis:
{[7 + 1]x 3}
Luego, se resuelven las operaciones dentro de los corchetes:
{[7+1] x 3}= {8 x 3}
Finalmente, se desarrollan las llaves:
{ 8 x 3 } = 24
Ejemplo
fracción numerador negrita 7 negrita más negrita 5 entre denominador negrita 3 negrita más negrita 1 fin fracción
En este caso tenemos una barra de fracción, asi que realizamos las operaciones sobre y bajo la barra primero:
7+ 5 = 12 y 3 + 1 = 4, nos queda la fracción 12/4 que es igual a 3:
fracción negrita 12 entre negrita 4 negrita igual negrita 3
Operaciones de suma y resta en que no hay signos de agrupación
En este caso se realizan las operaciones en el orden que se presentan:
5 + 3 - 4 + 2 - 6 + 2 ⇒
5 + 3 = 8,
8 - 4 = 4,
4 + 2 = 6,
6 - 6 = 0,
0 + 2 = 2
Ejemplo
1) 32-19+40-20+30-50
Hacemos las operaciones paso por paso:
32-19=13,
13+40=53,
53-20=33,
33+30=63,
63-50=13
2) 60-40+108-104+320-133-45
Hacemos las operaciones paso a paso:
60 - 40 = 20,
20 + 108 = 128,
128 - 104 = 24,
24 + 320 = 344,
344 - 133 = 211,
211 - 45 = 166.
Operaciones de suma y resta en que hay signos de agrupación
Se realizan primero las operaciones dentro de los paréntesis hasta que sólo queda un número:
678 - [(34 + 28) + (73 - 15) - (12 + 43)]⇒
34 + 28 = 62, 73 - 15 = 58, 12 + 43 = 55,
luego se resuelven las operaciones dentro del corchete:
62 + 58 = 120, 120 -55 = 65,
Finalmente se realiza el resto de las operaciones;
678 - 65 = 613.
Operaciones de multiplicación en que no hay signos de agrupación
Cuando no hay signos de agrupación, se realizan primero las multiplicaciones, seguido de las sumas y las restas:
3 x 4 + 5 x 6 ⇒
3 x 4 = 12, 5 x 6 = 30,
12 + 30 = 42
Ejemplo
15 - 5 x 3 + 4, primero se realiza la multiplicación:
5 x 3 = 15;
luego las sumas y las restas en el orden que aparecen:
15 -15 + 4 ⇒15 - 15 = 0,
0 + 4 = 4.
Operaciones de multiplicación con signos de agrupación
En estos casos se realizan primero las operaciones encerradas en los signos de agrupación, y luego las operaciones indicadas:
(5 - 2) 3 + 6 (4 - 1) ⇒ las operaciones dentro de los paréntesis:
5 - 2 = 3,
4 - 1 = 3;
ahora se realizan las multiplicaciones correspondientes:
(3 )3 = 9 y 6 (3) = 18; finalmente se suman los dos términos obtenidos:
9+18= 27
Ejemplo
(20 - 5 + 2)(16 - 3 + 2 - 1)⇒ 20 - 5 = 15, 15 + 2 = 17;
16 - 3 = 13, 13 + 2 = 15, 15 - 1 =14;
luego multiplicamos los resultados obtenidos de los paréntesis:
17 x 14=238
Operaciones de división o multiplicación en que no hay signos de agrupación
En estos casos se realizan primero las divisiones y multiplicaciones, y luego las sumas y restas:
12 ÷ 3 x 4 ÷ 2 x 6; las divisiones son 12 ÷ 3 = 4 y 4 ÷ 2 = 2;
luego la expresión queda como 4 x 2 x 6 = 48.
Ejemplo
10 ÷ 5 + 4 - 16 ÷ 8 - 2 + 4 ÷ 4 - 1⇒ primero realizamos las divisiones:
10 ÷5 = 2, 16 ÷ 8 = 2, 4 ÷ 4 = 1;
continuamos las operaciones indicadas en orden: 2 + 4 - 2 - 2 + 1 - 1
2 + 4 = 6, 6 - 2 = 4, 4 - 2 = 2, 2 + 1 = 3, 3 - 1 = 2.
La respuesta final a 10 ÷ 5 + 4 - 16 ÷ 8 - 2 + 4 ÷ 4 - 1 es 2.
Adjuntos:
Otras preguntas
Biología,
hace 3 meses
Salud,
hace 3 meses
Ciencias Sociales,
hace 5 meses
Matemáticas,
hace 5 meses
Historia,
hace 10 meses
Matemáticas,
hace 10 meses