Investiga cómo se definen los números irracionales y sus aplicaciones en las matemáticas
Respuestas a la pregunta
Respuesta:
Los números irracionales poseen infinitas cifras decimales no periódicas, por tanto no se pueden expresar en forma de fracción. , es el número irracional más conocido. Se define como la relación entre la longitud de la circunferencia y su diámetro.
Explicación paso a paso:
Un número irracional es un número que no se puede escribir en fracción - el decimal sigue para siempre sin repetirse. Los decimales no siguen ningún patrón, y no se puede escribir ninguna fracción que tenga el valor Pi. Números como 22/7 = 3.1428571428571...
Respuesta:
Un número irracional es un número que no se puede escribir en fracción - el decimal sigue para siempre sin repetirse.
Ejemplo: Pi es un número irracional. El valor de Pi es
3,1415926535897932384626433832795 (y más...)
Los decimales no siguen ningún patrón, y no se puede escribir ninguna fracción que tenga el valor Pi.
Números como 22/7 = 3,1428571428571... se acercan pero no son correctos.
pero si un número se puede escribir en forma de fracción se le llama número racional:
Ejemplo: 9,5 se puede escribir en forma de fracción así
19/2 = 9,5
así que no es irracional (es un número racional)
Aquí tienes más ejemplos:
Números En fracción ¿Racional o
irracional?
5 5/1 Racional
1,75 7/4 Racional
.001 1/1000 Racional
√2
(raíz cuadrada de 2) ? ¡Irracional!