Matemáticas, pregunta formulada por michelle9099, hace 1 año

holaa
me ayudan porfa
urgente

hallar la posicion relativa de la recta r. x + y =2 con respecto a la circunferencia
x^2 + y^2 + 2x + 4y + 1 = 0 ​

Respuestas a la pregunta

Contestado por davidgald
0

Respuesta:

La recta es externa a la circunferencia.

Explicación paso a paso:

con la ecuación de la recta y la de la circunferencia, se forma un sistema de ecuaciones. luego se despeja una variable de la primera y se sustituye en la segunda, según las soluciones que se obtengan, se sabrá si la recta es secante, tangente o externa a la circunferencia.

x + y = 2. despejamos x = 2 - y

x² + y² + 2x + 4y +1 = 0

Sustituimos x en la segunda ecuación:

(2 - y)² + y² + 2(2 - y) + 1 = 0. el binomio al cuadrado da como resultado un trinomio cuadrado perfecto y en el segundo paréntesis solo se distribuye el producto.

4 - 4y +  y² + y² + 4 - 2y + 1 = 0. Reducimos términos semejantes.

2y² - 6y + 9. lo resolvemos por fórmula general (pero antes probamos el discriminante: b²-4ac): a = 2; b = -6 c = 9

(-6)² - 4*2*9 = 36 -72 = -36; como el resultado es negativo, indica que la ecuación no tiene solución en los números reales, por lo tanto, la recta y la circunferencia no se tocan, es decir, la recta es externa a la circunferencia.

Otras preguntas