Hola, me podrian ayudar con este ejercicio que no he podido resolver.
Un cohete se eleva verticalmente desde el reposo con una aceleracion de 3.2 m/s2 hasta que se agota el combustible a una altitud de 950 m. Despues de este punto su aceleración es la de la gravedad, hacia abajo.
a.- ¿Cual es la velocidad del Cohete cuando se agota el combustible?
b.-¿ Cuanto tiempo le toma alcanzar este punto?
c.-¿Cual es la altura máxima que alcanza el cohete?
d.- Cuanto tiempo le toma alcanzar la altura máxima?
e.-¿Con que velocidad toca el suelo
ladyzesly:
hola jose el problema que has puesto se puede encontrar explicado perfectamente aqui: se que si lo has puesto aqui es para que te lo expliquen pero es que sinceramente no se hacerlo y ya llevas 4 horas esperando la respuesta y personalmente yo odio eso asi que te dejo este enlace para que lo veas. te juro que esta explicado super bien. saludos que tengas un buen dia y espero que te sirva.
Respuestas a la pregunta
Contestado por
3
Buenos días,
Para plantear la resolución del problema debemos extraer los datos que se disponen y el tipo de movimiento descrito, el cual corresponderá a un Movimiento Rectilíneo Uniformemente Acelerado, con velocidad inicial nula al partir del reposo y de aceleración correspondiente, que denominaremos a, de 3.2 m/, la cual se cumple hasta alcanzar una altitud de 950 metros, a partir de la cual inicia un movimiento con velocidad inicial presente, correspondiente a la que llegó a dicho punto y su aceleración pasa a ser la de gravedad, siendo el segundo escenario a evaluar. Con ello planteamos la resolución:
Para el primer escenario como hemos afirmado, la velocidad inicial es nula y la posición inicial cero si fijamos un sistema de coordenadas cuya referencia coincida con el cuerpo en su inicio de movimiento, con ello resolvemos:
(a) Para conocer la velocidad con la que llega a los 950 metros, es necesario conocer el tiempo que le llevó alcanzar dicha altura, por lo que planteamos la expresión requerida con dichas condiciones:
.... Expresión (1)
De ella extraemos el tiempo evaluando la aceleración y la altura máxima alcanzada en la expresión (1), teniendo un tiempo de t = 25.16 segundos, con lo cual por adelantado respondemos la interrogante (b) del enunciado. Ahora procedemos con este tiempo a determinar la velocidad con la que llega a tal altura, siendo:
(b) El tiempo con el que llega a dicha posición se determinó en el inciso anterior, correspondiendo a t = 25.16 segundos.
(c) Ahora bien, una vez alcanzada la altitud de 950 metros, el cohete mantiene su impulso por inercia, sin embargo inicia un movimiento desacelerado, puesto que su aceleración será debida a la gravedad que se opone a la dirección del movimiento, donde la velocidad inicial corresponderá a la velocidad con la que llegó a los 950 metros donde se acaba el combustible, además se conoce que al llegar a su altura máxima su velocidad final será nula, con ello es posible determinar el tiempo que le toma anular su velocidad y en función a ese tiempo plantear la altura máxima, así que procedemos a plantear las expresiones a requerir:
.... Expresión (2)
.... Expresión (3)
De la expresión (2) se plantea el movimiento desacelerado, con la expresión negativa de la aceleración por gravedad, sabiendo que la velocidad final es cero, la velocidad inicial será la del apartado (a) y siendo la aceleración por gravedad una constante conocida, se despeja el tiempo, que valdrá t = 7.70 segundos. Con ello es posible plantear el tiempo que le toma alcanzar la altura máxima, la cual será la suma del tiempo para alcanzar los 950 metros con combustible más el tiempo determinado hasta anular su velocidad, de modo que:
Ahora bien, con el tiempo de 7.70 segundos, se evalúa la expresión (3), con una posición inicial de 950 metros, obteniendo así la altura máxima, que corresponde a .
(d) El tiempo que le demora desde el inicio del movimiento hasta alcanzar la altura máxima se planteó anteriormente, con un resultado de 32.86 segundos.
(e) Ahora bien, para plantear la velocidad con la que llega al piso, es requerido determinar el tiempo que demora en ello, donde su posición inicial será la altura máxima, su velocidad inicial nula y la posición final será de cero, ahora describiendo una caída libre, planteando la expresión tal que:
... Expresión (4)
Con ello despejamos el tiempo tal que t = 15.90 segundos. Con este tiempo planteamos la resolución de la velocidad final con la que llegará al suelo, siendo esta:
Espero haberte ayudado.
Para plantear la resolución del problema debemos extraer los datos que se disponen y el tipo de movimiento descrito, el cual corresponderá a un Movimiento Rectilíneo Uniformemente Acelerado, con velocidad inicial nula al partir del reposo y de aceleración correspondiente, que denominaremos a, de 3.2 m/, la cual se cumple hasta alcanzar una altitud de 950 metros, a partir de la cual inicia un movimiento con velocidad inicial presente, correspondiente a la que llegó a dicho punto y su aceleración pasa a ser la de gravedad, siendo el segundo escenario a evaluar. Con ello planteamos la resolución:
Para el primer escenario como hemos afirmado, la velocidad inicial es nula y la posición inicial cero si fijamos un sistema de coordenadas cuya referencia coincida con el cuerpo en su inicio de movimiento, con ello resolvemos:
(a) Para conocer la velocidad con la que llega a los 950 metros, es necesario conocer el tiempo que le llevó alcanzar dicha altura, por lo que planteamos la expresión requerida con dichas condiciones:
.... Expresión (1)
De ella extraemos el tiempo evaluando la aceleración y la altura máxima alcanzada en la expresión (1), teniendo un tiempo de t = 25.16 segundos, con lo cual por adelantado respondemos la interrogante (b) del enunciado. Ahora procedemos con este tiempo a determinar la velocidad con la que llega a tal altura, siendo:
(b) El tiempo con el que llega a dicha posición se determinó en el inciso anterior, correspondiendo a t = 25.16 segundos.
(c) Ahora bien, una vez alcanzada la altitud de 950 metros, el cohete mantiene su impulso por inercia, sin embargo inicia un movimiento desacelerado, puesto que su aceleración será debida a la gravedad que se opone a la dirección del movimiento, donde la velocidad inicial corresponderá a la velocidad con la que llegó a los 950 metros donde se acaba el combustible, además se conoce que al llegar a su altura máxima su velocidad final será nula, con ello es posible determinar el tiempo que le toma anular su velocidad y en función a ese tiempo plantear la altura máxima, así que procedemos a plantear las expresiones a requerir:
.... Expresión (2)
.... Expresión (3)
De la expresión (2) se plantea el movimiento desacelerado, con la expresión negativa de la aceleración por gravedad, sabiendo que la velocidad final es cero, la velocidad inicial será la del apartado (a) y siendo la aceleración por gravedad una constante conocida, se despeja el tiempo, que valdrá t = 7.70 segundos. Con ello es posible plantear el tiempo que le toma alcanzar la altura máxima, la cual será la suma del tiempo para alcanzar los 950 metros con combustible más el tiempo determinado hasta anular su velocidad, de modo que:
Ahora bien, con el tiempo de 7.70 segundos, se evalúa la expresión (3), con una posición inicial de 950 metros, obteniendo así la altura máxima, que corresponde a .
(d) El tiempo que le demora desde el inicio del movimiento hasta alcanzar la altura máxima se planteó anteriormente, con un resultado de 32.86 segundos.
(e) Ahora bien, para plantear la velocidad con la que llega al piso, es requerido determinar el tiempo que demora en ello, donde su posición inicial será la altura máxima, su velocidad inicial nula y la posición final será de cero, ahora describiendo una caída libre, planteando la expresión tal que:
... Expresión (4)
Con ello despejamos el tiempo tal que t = 15.90 segundos. Con este tiempo planteamos la resolución de la velocidad final con la que llegará al suelo, siendo esta:
Espero haberte ayudado.
Otras preguntas
Ciencias Sociales,
hace 8 meses
Matemáticas,
hace 8 meses
Matemáticas,
hace 1 año
Matemáticas,
hace 1 año
Biología,
hace 1 año
Biología,
hace 1 año