Baldor, pregunta formulada por mariamkareliduran200, hace 1 año

Hola buenas tardes alguien que porfavor me resuelva este ejercicio, me urge porfavor ☹️ lo necesito para antes de la 7 porfavor ayuda

Adjuntos:

Respuestas a la pregunta

Contestado por kesain
3

Respuesta:

Un rectángulo esta inscrito en un segmento de parábola, un lado del rectángulo es la base del segmento.  

EL área del rectángulo máximo al segmento es:

1/√3.

De la imagen asentamos por semejanzas:

Y : x = ( y - y1) : x1

Tomando el la proporción de un rectángulo particular donde

X1 : y1 =1. Un cuadrado de dimensión perimetral unitaria, simplifica la ecuación a:

Y = x (y - 1), donde "y "es la parábola:

x exp2

.: Arect = y x= x exp3 - x, DA/dx= 3 exp 2 - 1 = 0

Por definición de máximos/mínimos diferenciales.

X = 1/√3

Para el intervalo incluyente 1/√2 <= x <= 1/√4

Valorando cada extremo en la derivación se aprecia un valor máximo (+) (-)

De la proporción x : y, ambas variables asumen la proporción del área máxima inscrita en el segmento de parábola

La parábola no me afecta y puesto que solo esta recorrida como y => (x + k) exp 2, o sea es la misma recorrida pero las proporciones son constantes.

Adjuntos:
Otras preguntas