hay tres enteros consecutivos la suma de los dos primeros es 35 unidades mayor que el tercero Encuentra los números
Respuestas a la pregunta
Respuesta:
LOS ENTEROS CONSECUTIVOS SON 36 , 37 y 38.
Explicación paso a paso:
x = 1 día
x = 1 díay = (x + 1) dia consecutivo a x
x = 1 díay = (x + 1) dia consecutivo a xz = (x + 2) día consecutivo a y
x = 1 díay = (x + 1) dia consecutivo a xz = (x + 2) día consecutivo a yx + y = z + 35
x = 1 díay = (x + 1) dia consecutivo a xz = (x + 2) día consecutivo a yx + y = z + 35x + y - z = 35
x = 1 díay = (x + 1) dia consecutivo a xz = (x + 2) día consecutivo a yx + y = z + 35x + y - z = 35x + x + 1 - x - 2 = 35
x = 1 díay = (x + 1) dia consecutivo a xz = (x + 2) día consecutivo a yx + y = z + 35x + y - z = 35x + x + 1 - x - 2 = 352x - x +1 - 2 = 35
x = 1 díay = (x + 1) dia consecutivo a xz = (x + 2) día consecutivo a yx + y = z + 35x + y - z = 35x + x + 1 - x - 2 = 352x - x +1 - 2 = 35x - 1 = 35
x = 1 díay = (x + 1) dia consecutivo a xz = (x + 2) día consecutivo a yx + y = z + 35x + y - z = 35x + x + 1 - x - 2 = 352x - x +1 - 2 = 35x - 1 = 35 x = 35 + 1
x = 1 díay = (x + 1) dia consecutivo a xz = (x + 2) día consecutivo a yx + y = z + 35x + y - z = 35x + x + 1 - x - 2 = 352x - x +1 - 2 = 35x - 1 = 35 x = 35 + 1x = 36
x = 1 díay = (x + 1) dia consecutivo a xz = (x + 2) día consecutivo a yx + y = z + 35x + y - z = 35x + x + 1 - x - 2 = 352x - x +1 - 2 = 35x - 1 = 35 x = 35 + 1x = 36x + 1 = y = 36 + 1
x = 1 díay = (x + 1) dia consecutivo a xz = (x + 2) día consecutivo a yx + y = z + 35x + y - z = 35x + x + 1 - x - 2 = 352x - x +1 - 2 = 35x - 1 = 35 x = 35 + 1x = 36x + 1 = y = 36 + 1 y = 37
x = 1 díay = (x + 1) dia consecutivo a xz = (x + 2) día consecutivo a yx + y = z + 35x + y - z = 35x + x + 1 - x - 2 = 352x - x +1 - 2 = 35x - 1 = 35 x = 35 + 1x = 36x + 1 = y = 36 + 1 y = 37x + 1 + 1 = z = 36 + 1 + 1
x = 1 díay = (x + 1) dia consecutivo a xz = (x + 2) día consecutivo a yx + y = z + 35x + y - z = 35x + x + 1 - x - 2 = 352x - x +1 - 2 = 35x - 1 = 35 x = 35 + 1x = 36x + 1 = y = 36 + 1 y = 37x + 1 + 1 = z = 36 + 1 + 1z = 38
VERIFICAMOS
x + y = z + 35
x + y = z + 3536 + 37 = 38 + 35
x + y = z + 3536 + 37 = 38 + 3573 = 73
VERIFICADO