Hallar los valores de x elemento de los reales para que la matriz A sea
singular.
A=(2 x-2)
(1 x)
Respuestas a la pregunta
El valor de x para que la matriz A sea singular es -2.
Nos dan la siguiente matriz A:
Sabemos que una matriz es singular cuando su determinante es nulo. Por lo tanto, procedemos a calcular el determinante de la matriz A.
El determinante |A| de la matriz 2x2 A se obtiene multiplicando de izquierda a derecha y de arriba hacia abajo sus componentes y a este resultado se le resta la multiplicación de izquierda a derecha y de abajo hacia arriba de sus componentes. Esto es:
|A|=(2*x)-[1*(x-2)]=2x-x+2=x+2
Si este determinante debe ser nulo, luego:
|A|=x+2=0 ⇔ x=-2
Por lo tanto, para que la matriz A sea regular, el valor de x debe ser -2.
Comprobemos este resultado:
Si x=-2, la matriz A será:
Por lo tanto, el valor de su determinante será:
|A|=2*(-2)-1*(-4)=-4+4=0
Luego, se comprueba que A es singular.