Hallar la suma de: x^3+y^3+z^3=?
{(x+y+z=5@x^2+y^2+z^2=3^2@1/x+1/y+1/z=1/2)
Respuestas a la pregunta
2)
3)
4)
Respuesta:
Explicación paso a paso:
1st eq. => x+y+z = 5
=> (x+y+z)² = 5²
=> x² + y² + z² + 2(xy+xz+yz) = 25
2nd eq. => x² + y² + z² = 3² = 9
3rd eq. · xyz => yz + xz + xy = \frac{xyz}{2}
1st eq. => x² + y² + z² + 2(xy+xz+yz) = 25
=> 9 + 2(\frac{xyz}{2} ) = 25
=> 2(\frac{xyz}{2} ) = 16
=> xyz = 16
3rd eq. => yz + xz + xy = \frac{xyz}{2}
=> yz + xz + xy = \frac{16}{2} = 8
Note:
(x + y + z)³ = x³ + y³ + z³ + 3x²y +3xy² + 3y²z + 3yz² + 3x²z + 3xz² + 6xyz
= x³ + y³ + z³ + 3xy(x + y) + 3yz(y + z) + 3xz(x + z) + 6xyz
Use:
xyz = 16 => xy = \frac{16}{z} => xz = \frac{16}{y} => yz = \frac{16}{x}
x + y + z = 5 => x + y = 5 - z => x + z = 5 - y => y + z = 5 - x
Substitute:
(x + y + z)³ = x³ + y³ + z³ + 3xy(x + y) + 3yz(y + z) + 3xz(x + z) + 6xyz =
5³ = x³ + y³ + z³ + 3 · \frac{16}{z} · (5 - z) + 3 · \frac{16}{x} · (5 - x) + 3 · \frac{16}{y} · (5 - y) + 6 · 16
=> 125 = x³ + y³ + z³ + \frac{48}{z} · (5 - z) + \frac{48}{x} · (5 - x) + \frac{48}{y} · (5 - y) + 96
=> 125 = x³ + y³ + z³ + \frac{48 · 5}{z} - 48 + \frac{48 · 5}{x} - 48 + \frac{48 · 5}{y} - 48 + 96
=> 125 = x³ + y³ + z³ + \frac{240}{z} + \frac{240}{x} + \frac{240}{y} - 48 - 48 - 48 + 96
=> 125 = x³ + y³ + z³ + \frac{240 · xy}{z · xy} + \frac{240 · yz}{x · yz} + \frac{240 · xz}{y · xz} - 48
=> 125 = x³ + y³ + z³ + \frac{240xy}{xyz} + \frac{240yz}{xyz} + \frac{240xz}{xyz} - 48
=> 125 = x³ + y³ + z³ + \frac{240xy + 240yz + 240xz}{xyz} - 48
=> 125 = x³ + y³ + z³ + 240 · \frac{xy + yz + xz}{xyz} - 48
Use:
xy + yz + xz = 8
xyz = 16
Substitute:
=> 173 = x³ + y³ + z³ + 240 · \frac{xy + yz + xz}{xyz}
=> 173 = x³ + y³ + z³ + 240 · \frac{8}{16}
=> 173 = x³ + y³ + z³ + 240 · \frac{1}{2}
=> 173 = x³ + y³ + z³ + 120
=> 53 = x³ + y³ + z³