Hallar la ecuación general de la circunferencia que cumple con las condiciones dadas. Graficar.
1- De centro (-2,3) y que sea tangente a la recta 20 x- 21 y-42= 0
Respuestas a la pregunta
RESPUESTA:
ECUACION DE LA CIRCUNFERENCIA DEL MODELO GENERAL:
x² + y² + 4x -6y - 12 = 0
SI TE FUE ÚTIL DALE LIKE, 5 ESTRELLAS Y CORONA, CONSIDERA SEGUIRME Y GRACIAS DESDE MONTERREY, NUEVO LEÓN, MÉXICO.
EXPLICACIÓN PASO A PASO:
HOLA, PARA RESOLVER ESTE PROBLEMA, DEBEMOS DE CAPTAR LA IDEA DE QUE EL CENTRO SON TALES COORDENADAS Y QUE LA ECUACIÓN DADA ES UNA RECTA TANGENTE, ES UN ÚNICO PUNTO QUE SE ENCUENTRA Y TOCA EN LA CIRCUNFERENCIA.
ENTONCES PODEMOS DECIR QUE LA DISTANCIA ENTRE EL CENTRO Y LA TANGENTE, EQUIVALE AL RADIO.
SABEMOS QUE EL RADIO ES UNA DISTANCIA Y QUE EN EL PLANO CARTESIANO HAY UNA FORMULA PARA CALCULAR LA DISTANCIA DE PUNTO A OTRO.
LA FÓRMULA ES:
d = | (Ax1) + (By1) + C | / √A² + B²
DONDE:
d = Distancia (DEL CENTRO AL PUNTO, RADIO)
A = EL VALOR QUE ACOMPAÑA X EN LA TANG.
B = EL VALOR QUE ACOMPAÑA Y EN LA TANG.
C = EL TERMINO CONSTANTE DE LA REC TANG.
x1 = LA COORDENADA DE x EN EL PAR
y1 = LA COORDENADA DE y EN EL PAR
BAJO ESTA IDEA, SUSTITUIMOS PARA SABER LO QUE MIDE EL RADIO.
d = | (20 * -2) + (-21 * 3) - 42 | / √20² + -21²
CALCULAMOS TODO LO PASADO QUEDANDO:
d = 5
ES DECIR QUE LA DISTANCIA DEL RADIO DEL CENTRO (x , y) HASTA LA RECTA TANGENTE ES IGUAL A 5.
COMO SABEMOS EL RADIO Y LAS COORDENADAS DEL CENTRO DE LA CIRCUNFERENCIA SON LOS 2 ELEMENTOS PARA FORMAR LAS ECUACIÓN DEL CÍRCULO.
PARA HACER LA FORMULA GENERAL, TENEMOS QUE HACER LA FÓRMULA ORDINARIA PARA QUE ESA LA PASEMOS A GENERAL, LA ORDINARIA QUE TIENE UN MODELO:
(x - h)² + (y - k)² = r²
DONDE:
h = PUNTO x EN EL CENTRO
k = PUNTO y EN EL CENTRO
r = VALOR DE LA DISTANCIA DEL CENTRO A LA RECTA TANGENTE
SUSTITUIMOS:
( x - (-2) ) ² + ( y - 3)² = 5²
SI HAY 2 SIGNOS JUNTOS LOS MULTIPLICAMOS Y EVALUAMOS EL CUADRADO DEL RADIO:
(x + 2)² + (y -3)² = 25
PERFECTO UNA VEZ QUE TENEMOS ESTA ECUACIÓN ORDINARIA, PARA HACERLA A MODELO GENERAL LO QUE HACEMOS ES RESOLVER ESTOS BINOMIOS AL CUADRADO Y MAS COSAS.
(x² + 4x + 4) + (y² - 6y + 9) = 25
AHORA JUNTAMOS TÉRMINOS SEMEJANTES Y ACOMODAMOS DE MAYOR A MENOR EXPONENTE Y CON EL ALFABETO.
x² + y² + 4x -6y + 13 = 25
RESTAMOS 25 A AMBOS LADOS:
x² + y² + 4x -6y - 12 = 0
LISTO ESTA ES TU FORMULA GENERAL.
IMAGEN ARRIBA Y RESPUESTA.