Matemáticas, pregunta formulada por tamay2405, hace 3 meses

hallar la ecuacion de la recta que pasa por los puntos A (-3,8) y B (6,5)

Respuestas a la pregunta

Contestado por wernser412
2

Respuesta:            

La ecuación de la recta que pasa por los puntos A(-3,8) y B(6,5) ​ es y = -x/3 + 7          

           

Explicación paso a paso:            

Para poder darle solución al problema,  Empezamos calculando la pendiente (m) de la recta:              

m  = (y₂ - y₁)/(x₂ - x₁)            

           

Para hacerlo más sencillo aún, vamos a poner nuestros datos. Los que tenemos hasta ahora.            

A ( -3 , 8 ) y  B ( 6 , 5 )

           

Datos:            

x₁ =  -3          

y₁ = 8          

x₂ = 6          

y₂ =  5          

           

Hallamos la pendiente de la recta entre dos puntos:            

m  = (y₂ - y₁)/(x₂ - x₁)            

m = (5 - (+8))/(6 - (-3))            

m = (-3)/(9)            

m = -1/3            

           

Elegimos uno de los puntos para hacer pasar la recta por ese punto, en este caso hemos elegido el punto  x₁= -3 y y₁= 8            

           

Sustituimos m, x₁ e y₁ en la fórmula de la ecuación punto-pendiente, que es y = y₁ + m(x - x₁)            

           

quedando entonces:            

           

y = y₁ + m(x - x₁)            

y = 8-1/3(x -( -3))            

y = 8-1/3(x +3)            

y = 8-x/3-3/3            

y = -x/3-3/3+8            

y = -x/3+21/3

y = -x/3 + 7          

           

Por lo tanto, la ecuación de la recta que pasa por los puntos A(-3,8) y B(6,5) ​ es y = -x/3 + 7          

Otras preguntas