Matemáticas, pregunta formulada por stone94, hace 2 meses

Hallar el volumen de la esfera engendrada por la rotación del siguiente semicirculo alrededor de su diámetro MN​

Adjuntos:

Respuestas a la pregunta

Contestado por youbabyxD
15

Respuesta:

Pwro hahahaha nvn

Adjuntos:

cinthyamiluskaparede: Procedimiento xfa
youbabyxD: jajajsdjsd, ese es el procedimiento amixa
youbabyxD: sacaras 21, te lo aseguro
Contestado por Rufitibu62
1

El volumen de la esfera engendrada por la rotación del semicírculo mostrado, alrededor de su diámetro MN​ es de 523,60 cm³.

Para calcular el volumen de una esfera, se utiliza la ecuación:

V = (4/3) * π * r³

Donde, "π" es una constante de valor 3,1416 y "r" es el radio de la esfera.

El radio de la esfera se puede calcular utilizando el Teorema de Pitágoras, considerando que el triángulo mostrado en la figura es un triángulo rectángulo.

El Teorema de Pitágoras relaciona los lados de un triángulo rectágulo de la siguiente manera:

a² + b² = c²

Donde, "a" y "b" son los catetos del triángulo y "c" su hipotenusa.

En el triángulo de la imagen, la hipotenusa se corresponde con el diámetro de la esfera.

c² = (6 cm)² + (8 cm)²

c = √(36 cm² + 64 cm²)

c = √(100 cm²)

c = 10 cm

Se conoce que el radio de una esfera es igual a la mitad de su diámetro, por lo tanto el radio es:

r = 10 cm / 2

r = 5 cm

Finalmente, el volumen de la esfera es:

V = (4/3) * 3,1416 * (5 cm)³

V = 523,60 cm³

Ver más acerca de Volumen de Esfera en https://brainly.lat/tarea/441269

Adjuntos:
Otras preguntas