Matemáticas, pregunta formulada por etell, hace 1 año

hallar el valor de 5h siendo: H= 1/35+1/63+1/99+.....+1/59*61 ¿que numero sige?

Respuestas a la pregunta

Contestado por Mainh
1
¡Buenas!

H=  \dfrac{1}{35}+  \dfrac{1}{63}+ \dfrac{1}{99}+ \ldots +\dfrac{1}{59\ \cdot\ 61} \\  \\  \\ \mathit{Escribimos\ la\ sucesion\ de\ la\ siguiente\ manera} \\  \\  \\ H=  \dfrac{1}{5\ \cdot\ 7}+  \dfrac{1}{7\ \cdot\ 9}+ \dfrac{1}{9\ \cdot\ 11}+ \ldots +\dfrac{1}{59\ \cdot\ 61}

H=  \dfrac{1}{2} \left( \dfrac{1}{5}- \dfrac{1}{7 \right)} + \dfrac{1}{2} \left( \dfrac{1}{7}- \dfrac{1}{9 \right)}  + \dfrac{1}{2} \left( \dfrac{1}{9}- \dfrac{1}{11 \right)} +\ldots+ \dfrac{1}{2} \left( \dfrac{1}{59}- \dfrac{1}{61 \right)}  \\  \\  \\ \mathnormal{Factorizamos} \\  \\  \\ H=  \dfrac{1}{2} \left(  \dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+ \ldots +\dfrac{1}{57}-\dfrac{1}{59}+\dfrac{1}{59}-\dfrac{1}{61}  \right)

H=  \dfrac{1}{2} \left(  \dfrac{1}{5}- \dfrac{1}{7} +\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+ \ldots +\dfrac{1}{57}-\dfrac{1}{59}+\dfrac{1}{59}-\dfrac{1}{61}  \right) \\  \\  \\  H= \dfrac{1}{2} \left(  \dfrac{1}{5} - \dfrac{1}{61}  \right) \\  \\  \\ H= \dfrac{28}{305} \\  \\  \\ 5H = 5 \cdot\ \dfrac{28}{305}  \\  \\  \\ 5H =  \dfrac{28}{61}

RESPUESTA

\boxed{ \dfrac{28}{61} }
Otras preguntas