hallar cuatro numeros consecutivos tales que si al triple de la suma de los dos mayores le disminuimos el doble de la suma de dos menores resultaria 53
Respuestas a la pregunta
Contestado por
46
Primero definamos tres números consecutivos, son los que se diferencia de 1 (a menos que nos digan numeros pares, impares, etc).
ej de 4números consecutivos cualquieras: a, a+1,a+2,a+3
ahora aplicamos lo que nos dicen:
el triple de la suma de los dos mayores :
3(a+2 + a+3)
le disminuimos el doble de la suma de los dos menores:
3(a+2 + a+3) - 2(a + a+1)
resultará 53:
3(a+2 + a+3) - 2(a + a+1) = 53
Si resolvemos, los parentesis primero:
3( 2a + 5 ) - 2 ( 2a + 1) = 53, continuamos
6a + 15 -4a - 2 = 53
2a + 13 = 53
despejamos "a": 2a =40 --> a =20
si a es 20, los consecutivos serán, 21, 22 y 23
ej de 4números consecutivos cualquieras: a, a+1,a+2,a+3
ahora aplicamos lo que nos dicen:
el triple de la suma de los dos mayores :
3(a+2 + a+3)
le disminuimos el doble de la suma de los dos menores:
3(a+2 + a+3) - 2(a + a+1)
resultará 53:
3(a+2 + a+3) - 2(a + a+1) = 53
Si resolvemos, los parentesis primero:
3( 2a + 5 ) - 2 ( 2a + 1) = 53, continuamos
6a + 15 -4a - 2 = 53
2a + 13 = 53
despejamos "a": 2a =40 --> a =20
si a es 20, los consecutivos serán, 21, 22 y 23
Contestado por
3
Respuesta:
86
Explicación paso a paso:
El procedimiento de arriba esta bien.
Otras preguntas