Matemáticas, pregunta formulada por SmithRecopilacionMat, hace 16 días

halla el valor de n que verifica la igualdad en
(n 1)+2^2(n 2)+3^2(n 3)+4^2(n 4)+.....+n^2(n n)=28 160
A)7 B)8 C)9 D)10 E)11

Respuestas a la pregunta

Contestado por SmithValdez
0

algunas propiedades

su complemento seria

\dbinom{n}{k}=\dfrac{n}{k} \dbinom{n-1}{k-1}

si n∈Z+ , k≤n se cumple:

\dbinom{n}{k}=C^{n}_{k}

suma

C^{n}_{0}+C^{n}_{1}+C^{n}_{2}+C^{n}_{3}...+C^{n}_{n}=2^{n}

analicemos

S=\dbinom{n}{1} +2^2\dbinom{n}{2}+3^2\dbinom{n}{3}+4^2\dbinom{n}{4}+.....+n^2\dbinom{n}{n}=28 160

S=n\dbinom{n-1}{0} +2^2.\dfrac{n}{2}\dbinom{n-1}{1}+3^2.\dfrac{n}{3}\dbinom{n-1}{2}+4^2.\dfrac{n}{4}\dbinom{n-1}{3}+.....+n^2.\dfrac{n}{n}\dbinom{n-1}{n-1}

S=n\dbinom{n-1}{0} +2n\dbinom{n-1}{1}+3n\dbinom{n-1}{2}+4n\dbinom{n-1}{3}+.....+n^2\dbinom{n-1}{n-1}

S=n[\dbinom{n-1}{0} +2\dbinom{n-1}{1}+3\dbinom{n-1}{2}+4\dbinom{n-1}{3}+.....+n\dbinom{n-1}{n-1}]

podemos hallar su parte complementaria de cada termino

S=n[\dbinom{n-1}{n-1} +2\dbinom{n-1}{n-2}+3\dbinom{n-1}{n-3}+4\dbinom{n-1}{n-4}+.....+n\dbinom{n-1}{0}]

invertimos el orden de esta ultima

S=n[n\dbinom{n-1}{0} +(n-1)\dbinom{n-1}{1}+(n-2)\dbinom{n-1}{2}....+\dbinom{n-1}{n-1}]

sumamos esta ultima con la antepenúltima

2S=n[\dbinom{n-1}{0} +2\dbinom{n-1}{1}+3\dbinom{n-1}{2}+4\dbinom{n-1}{3}+.....+n\dbinom{n-1}{n-1}+ n\dbinom{n-1}{0} +(n-1)\dbinom{n-1}{1}+(n-2)\dbinom{n-1}{2}....+\dbinom{n-1}{n-1}]

sumando términos semejantes

2S=n[(n+1)\dbinom{n-1}{0} +(n+1)\dbinom{n-1}{1}+(n+1)\dbinom{n-1}{2}+(n+1)\dbinom{n-1}{3}+.....+(n+1)\dbinom{n-1}{n-1}]

2S=n(n+1)[\dbinom{n-1}{0} +\dbinom{n-1}{1}+\dbinom{n-1}{2}+\dbinom{n-1}{3}+.....+\dbinom{n-1}{n-1}]

2S=n(n+1)[C^{n-1}_{0}+C^{n-1}_{1}+C^{n-1}_{2}+C^{n-1}_{3}...+C^{n-1}_{n-1}]

2S=n(n+1)[2^{n-1}]

2(28160)=n(n+1)[2^{n-1}]

10.11.2^{9} =n(n+1)[2^{n-1}]

n=10

AUTOR: SmithValdez

Otras preguntas