Matemáticas, pregunta formulada por roblesyeribel98, hace 2 meses

Halla 2 números sabiendo que suman 10 y que la diferencia de sus cuadrados es 40

Respuestas a la pregunta

Contestado por Piscis04
5

Sistema de Ecuaciones

X = un número    y = otro número
Suma = +                   diferencia = -
entonces se forman dos ecuaciones

  x  +  y = 10
   x² - y² = 40



Resolvemos el sitema

\bf \left \{ {{1)\quad x+y=10} \atop {2)\quad x^{2}-y^{2}=40}} \right. \\ \\ \\ Despejamos \ la \ primer \ ecuaci\'on \\ \\ x +y = 10\to y = 10 -x \\ \\ Reemplazamos \ en \ la \ segunda \ ecuaci\'on\\ \\ x^{2}- y^{2}=40\\ \\   x^{2}- (10-x)^{2}=40\qquad Resolvemos \\ \\  x^{2}-(10^{2}-2*10*x +x^{2})=40\\ \\  x^{2}-(100-20x +x^{2})=40\qquad Sacamos\ el\ parentesis \\ \\   x^{2}-100+20x -x^{2}=40\qquad Resolvemos  \\ \\ -100+20x =40\qquad Despejamos \\ \\ 20x =40+100\\ \\ x =\frac{140}{20}\to x= 7



Tenemos x debemos encontrar y


\bf y= 10-x\qquad \qquad x= 7\\ \\ y= 10 -7\\ \\ y=3

Respuesta: los números son el 7 y el 3


Espero que te sirva, salu2!!!!


roblesyeribel98: Gracias
Otras preguntas