haciendo uso de las formulas de centro y radio
halla la ecuación ordinaria de la circunferencia de una ecuación general
x²+y²-10x-6y+18=0
Respuestas a la pregunta
Contestado por
6
Respuesta: La ecuación ordinaria es (x - 5)² + (y - 9)² = 16.
Explicación paso a paso:
x²+y²-10x-6y+18=0
Se asocian los términos que contienen x en un paréntesis y los que contienen y en otro paréntesis. El término independiente, el 18, se traslada al miembro derecho:
(x² - 10x + ) + (y² - 6y + ) = -18
Se suma en cada paréntesis el cuadrado de la mitad del coeficiente del segundo término:
(x² - 10x + 25) + (y² - 6y + 9)
Estas mismas cantidades también se suman en el segundo miembro:
(x² - 10x + 25) + (y² - 6y + 9) = - 18 + 25 + 9
(x² - 10x + 25) + (y² - 6y + 9) = 16
Se expresan los trinomios del primer miembro como cuadrados:
(x - 5)² + (y - 9)² = 16
El centro es (5,9) y el radio es R = √16 = 4
Angelk09p:
La respuesta es 29(37=828%73=783+382×6292÷8203-82 es igual 150
Otras preguntas
Ciencias Sociales,
hace 4 meses
Religión,
hace 4 meses
Castellano,
hace 9 meses
Biología,
hace 9 meses
Filosofía,
hace 1 año
Tecnología y Electrónica,
hace 1 año