Matemáticas, pregunta formulada por Calacarlitos, hace 11 meses

Hacer mediante definición de la derivada por favor:(

Adjuntos:

Respuestas a la pregunta

Contestado por juancarlosaguerocast
3

Definición de la derivada:

 f'(x) = \underset{h \to 0}{Lim}   \: \frac{f(x+h) - f(x)}{h}

Problema B)

 f(x) = 4x^2 +2x -5

Entonces:

 f'(x) = \underset{h \to 0}{Lim}   \: \frac{f(x+h) - f(x)}{h}

 f'(x) = \underset{h \to 0}{Lim}   \: \frac{(4(x+h)^2 + 2(x+h) - 5)  - (4x^2 +2x -5 )}{h}

 f'(x) = \underset{h \to 0}{Lim}   \: \frac{(4(x^2 + 2xh + h^2 ) + 2x+2h - 5)  - (4x^2 +2x -5 )}{h}

 f'(x) = \underset{h \to 0}{Lim}   \: \frac{ \cancel{4x^2 }+ 8xh + 4h^2  +\cancel{ 2x}+2h - \cancel{5} -\cancel{ 4x^2 } - \cancel{2x} +\cancel{5}}{h}

 f'(x) = \underset{h \to 0}{Lim}   \: \frac{ 8xh + 4h^2   +2h  }{h}

 f'(x) = \underset{h \to 0}{Lim}   \: \frac{h( 8x + 4h  +2)  }{h}

 f'(x) = \underset{h \to 0}{Lim}   \: (8x + 4h  +2)

 f'(x) =   \: 8x + 4(0)  +2

 f'(x) =   \: 8x  +2

Problema C)

 f(x) = 3x^3 + 5x^2 -4x +10

Entonces:

 f'(x) = \underset{h \to 0}{Lim}   \: \frac{f(x+h) - f(x)}{h}

 f'(x) = \underset{h \to 0}{Lim}   \: \frac{(3(x+h)^3 + 5(x+h)^2 -4(x+h)+10) - (3x^3 + 5x^2 -4x +10)}{h}

 f'(x) = \underset{h \to 0}{Lim}   \: \frac{(3(x^3 + 3x^2 h + 3xh^2 + h^3 ) + 5(x^2 + 2xh + h^2 ) -4x-4h+10) - 3x^3 - 5x^2 +4x -10}{h}

 f'(x) = \underset{h \to 0}{Lim}   \: \frac{ \cancel{3x^3 } + 9x^2 h + 9xh^2 +3 h^3  + \cancel{ 5x^2} + 10xh + 5h^2  - \cancel{4x}-4h+\cancel{10} - \cancel{3x^3} -\cancel{ 5x^2 }+ \cancel{4x}- \cancel{10}}{h}

 f'(x) = \underset{h \to 0}{Lim}   \: \frac{9x^2 h + 9xh^2 +3 h^3   + 10xh + 5h^2 -4h}{h}

 f'(x) = \underset{h \to 0}{Lim}   \: \frac{h(9x^2 + 9xh +3h^2   + 10x+ 5h -4)}{h}

 f'(x) = \underset{h \to 0}{Lim}   \: (9x^2 + 9xh +3 h^2   + 10x+ 5h -4)

 f'(x) =  \: 9x^2 + 9x(0) +3 (0)^2   + 10x+ 5(0) -4

 f'(x) =  \: 9x^2  + 10x -4

Otras preguntas