hace n años las edades de Juan y Luis eran 3 a 2 y dentro de 2n años serán 5 a 4 ¿cuál es la relación actual de las edades?
Respuestas a la pregunta
Respuesta: La relación actual de las edades es 11 a 8.
Explicación paso a paso:
Sean X y Y las edades actuales de Juan y Luis.
Entonces, X / Y es la relación actual de sus edades.
Como hace n años la relación de las edades era 3/2, entonces se cumple que:
(X - n) / (Y - n) = 3/2 ...................(1)
Además, dentro de 2n años las edades estarán en la relación de 5 a 4. Por tanto se cumple que:
(X + 2n) / (Y + 2n) = 5/4 .............(2)
De la ecuación (1):
X - n = (3/2)(Y - n)
⇒X = (3/2)(Y - n) + n
⇒X = (3/2)Y - (3n/2) + (2n/2)
⇒X = (3/2)Y - n / 2 ................... (3)
De la ecuación (2):
(X + 2n) = (5/4)(Y + 2n)
⇒ X = (5/4)(Y + 2n) - 2n
⇒ X = (5/4)Y + (10n / 4) - 2n
⇒ X = (5/4)Y + (5n / 2) - 2n
⇒ X = (5/4)Y + n/2 .................(4)
Al igualar (3) y (4) , tenemos:
(3/2)Y - n / 2 = (5/4)Y + n/2
(3/2)Y - (5/4)Y = n/2 + n/2
Y / 4 = n
Y = 4n
Al sustituir este valor de Y en la ecuación (4), resulta:
X = (5/4)(4n) + n/2
X = 5n + n/2
X = 11n / 2
La relación actual de las edades es:
X / Y = (11n / 2) / (4n) = 11n / 8n = 11/8