Matemáticas, pregunta formulada por 3XT11NT0, hace 4 meses

██╗░░██╗██████╗░
╚██╗██╔╝██╔══██╗
░╚███╔╝░██║░░██║
░██╔██╗░██║░░██║
██╔╝╚██╗██████╔╝
╚═╝░░╚═╝╚═════╝░
Gente necesito que me ayuden con este ejercicio por favor, he preguntado si alguien se sabia la respuesta y nadie me a ayudado :(
*Considerando el lanzamiento de 4 monedas, cuál será la probabilidad de Obtener una cara*


3XT11NT0: ██╗░░██╗██████╗░
╚██╗██╔╝██╔══██╗
░╚███╔╝░██║░░██║
░██╔██╗░██║░░██║
██╔╝╚██╗██████╔╝
╚═╝░░╚═╝╚═════╝░
3XT11NT0: Considerando el lanzamiento de 4 monedas, cuál será la probabilidad de Obtener una cara
nicolasforero5jt: Al lanzar 4 monedas hay 16 posibles secuencias equiprobables:

CCCC
CCCx
CCxC
CCxx

CxCC
CxCx
CxxC
Cxxx

xCCC
xCCx
xCxC
xCxx

xxCC
xxCx
xxxC
xxxx

Se puede comprobar que hay 6 de esas 16 que tienen 2 caras.
(las he marcado en negrita)

Por tanto, la probabilidad es:
nicolasforero5jt: p = 6/16 = 3/8 = 0.375

El 37.5% de las veces saldrán 2 caras, y el 62.5% de las veces el número de caras será distinto de dos.

Otra forma de hacerlo es calcular las permutaciones con repetición.
Tenemos 2 caras y 2 cruces (CCxx) ¿de cuantas formas diferentes se pueden ordenar? (CCxx, CxCx, xxCC … etc)

Son permutaciones de 4 elementos donde uno se repite 2 veces y otro se repite 2 veces:

PR42,2=4!2!∗2!=3∗2=6

Sin tener que nombrarlas todas y contarlas podemos calcular el número.
nicolasforero5jt: El número de secuencias de 4 dígitos binarios también se puede calcular.
En este caso se llaman variaciones. Variaciones de 2 elementos tomados de 4 en 4.

V(2, 4) = 2^4 = 16

p = 6/16 = 3/8 = 0.375

Por último, otro método es hacer un árbol de casos:

C*** :
50% de los casos, la primera es cara
nicolasforero5jt: CC**
de ese 50%, el 50% la segunda será cara… eso es un 25%

De estos, solamente puede haber 2 caras cuando el resto son cruces.
La tercera cruz (CCX*) es un 50% del 25% de CC** : un 12.5%
Y la cuarta cruz (CCXX) es un 50% del 12.5% : un 6.25%

CX** ocurre un 50% del 50% de los C*** : un 25%
De estos habrá 2 caras cuando sea CXCX o bien CXXC
Eso son dos casos con 6.25% cada uno.

X***:
50% de los casos, la primera es cruz.
nicolasforero5jt: XC** : 25%
XCCX : 6.25%
XCXC : 6.25%

XX** : 50%
XXCC : 6.25%

Total: 6 veces 6.25% = 3 veces 12.5% = 37.5%

Con este último método podríamos calcularlo también si hay monedas trucadas y sabemos las probabilidades de cara de cada una: p1, p2, p3, p4.

Sería:

p = p1*p2*(1-p3)*(1-p4) + p1*(1-p2)*p3*(1-p4) + p1*(1-p2)*(1-p3)*p4 +
+ (1-p1)*p2*p3*(1-p4) + (1-p1)*p2*(1-p3)*p4 + (1-p1)*(1-p2)*p3*p4

Respuestas a la pregunta

Contestado por mondragoncristian273
0

bueno las probabilidades serían pocas

Explicación paso a paso:

me das coronita:)

Otras preguntas