Matemáticas, pregunta formulada por UBERLI, hace 4 meses

geente por favor ayudeneme

Adjuntos:

Respuestas a la pregunta

Contestado por romaneczrodriguez
0

Respuesta:

lim_{x > 3}( \frac{ \sqrt{x { }^{2 }  - 2x  + 6}  -  \sqrt{x {}^{2}  + 2x  - 6} }{x {}^{2}  { - 4x + 3}^{} } ) \\ lim_{x > 3}( \frac{ \sqrt{x { }^{2 }  - 2x  +  6}  -  \sqrt{x {}^{2}  + 2x - 6} }{x {}^{2}  { - 4x + 3}^{} } x  \frac{ \sqrt{x ^{2}  - 2x - 6}  -  \sqrt{ \times ^{2}  + 2x - 6} }{ \sqrt{x {}^{2} - 2x + 6 } -  \sqrt{x {}^{2} +2x - 6  }  })  \\ lim_{x > 3}( \frac{( \sqrt{ {}x^{2} - 2x + 6 } -  \sqrt{x {}^{2} + 2x - 6 }) \times ( \sqrt{x {}^{2}   - 2x  + 6}  -  \sqrt{x {}^{2} + 2x - 6 }   }{(x {}^{2}  - 4 + 3)(  \sqrt{x {}^{2} + 2x - 6 }  +  \sqrt{x {}^{2} - 2x + 6 })   }  \\ lim_{x > 3}( \frac{x {}^{2} - 2x + 6(x {}^{2}  + 2x - 6) }{(x {}^{2} - x - 3x + 3) \times ( \sqrt{x {}^{2} - 2x + 6 } +  \sqrt{x {}^{2} + 2 x - 6)  }   } \\  lim_{x > 3}( \frac{ x {}^{2} - 2x + 6 - x { }^{2} - 2x + 6  }{(x \times (x - 1) - 3((x - 1)) \times ( \sqrt{x {}^{2} \times - 2x + 6 } +  \sqrt{x {}^{2} + 2x - 6 })  }  \\ lim_{x > 3}( \frac{ - 4x + 12}{(x - 1)(x - 3)( \sqrt{x {}^{2} - 2x + 6 } +  \sqrt{x {}^{2} + 2x - 6 })  }  \\ lim_{x > 3}( \frac{ - 4(x - 3)}{(x - 1)(x - 3)( \sqrt{ {}^{2} - 2x + 6 } +  \sqrt{x {}^{2} + 2x - 6 })  }  \\ lim_{x > 3}( \frac{ - 4}{(x - 1)( \sqrt{x {}^{2} - 2x + 6 } +  \sqrt{x {}^{2}  + 2x - 6} ) }  \\  \frac{ - 4}{(3 - 1)( \sqrt{3 {}^{2}  - 2 \times 3 + 6} +  \sqrt{ {3}^{2} + 2 \times 3 - 6 }  }  \\   - \frac{1}{3}


UBERLI: gracias
Otras preguntas