Fórmulas de tendencia central datos agrupados y no agrupados
Respuestas a la pregunta
Respuesta:
pretenden resumir en un solo valor a un conjunto de valores. Representan un centro en torno al cual se encuentra ubicado el conjunto de los datos. Las medidas de tendencia central más utilizadas son: media, mediana y moda. Las medidas de dispersión en cambio miden el grado de dispersión de los valores de la variable. Dicho en otros términos las medidas de dispersión pretenden evaluar en qué medida los datos difieren entre sí. De esta forma, ambos tipos de medidas usadas en conjunto permiten describir un conjunto de datos entregando información acerca de su posición y su dispersión.
Los procedimientos para obtener las medidas estadísticas difieren levemente dependiendo de la forma en que se encuentren los datos. Si los datos se encuentran ordenados en una tabla estadística diremos que se encuentran “agrupados” y si los datos no están en una tabla hablaremos de datos “no agrupados”.
Según este criterio, haremos primero el estudio de las medidas estadísticas para datos no agrupados y luego para datos agrupados.
Medidas estadísticas en datos no agrupado
Medidas de tendencia central
Promedio o media
La medida de tendencia central más conocida y utilizada es la media aritmética o promedio aritmético. Se representa por la letra griega µ cuando se trata del promedio del universo o población y por Ȳ (léase Y barra) cuando se trata del promedio de la muestra. Es importante destacar que µ es una cantidad fija mientras que el promedio de la muestra es variable puesto que diferentes muestras extraídas de la misma población tienden a tener diferentes medias. La media se expresa en la misma unidad que los datos originales: centímetros, horas, gramos, etc.
Si una muestra tiene cuatro observaciones: 3, 5, 2 y 2, por definición el estadígrafo será:
Estos cálculos se pueden simbolizar:
Donde Y1 es el valor de la variable en la primera observación, Y2 es el valor de la segunda observación y así sucesivamente. En general, con “n” observaciones, Yi representa el valor de la i-ésima observación. En este caso el promedio está dado por
De aquí se desprende la fórmula definitiva del promedio:
Desviaciones: Se define como la desviación de un dato a la diferencia entre el valor del dato y la media:
Ejemplo de desviaciones: