Matemáticas, pregunta formulada por SmithRecopilacionMat, hace 16 horas

Factorizar P(m,n)=m^5 +(m^4)n +n^5

Respuestas a la pregunta

Contestado por jdmendezr71
0

Explicación paso a paso:

 {m}^{5}  + ( {m}^{4} )n +  {n}^{5}  \\  {m}^{5}  +  {m}^{4} n +  {n}^{5} \\  =

Contestado por SmithValdez
1

Podemos extraer un término

P(m,n)=m^5 +(m^4)n +n^5\\\\P(m,n)=n^5[\dfrac{m^{5}}{n^{5}} +\dfrac{m^{4}}{n^{4}}+1]

asumamos que:

\dfrac{m}{n}=x

P(m,n)=n^5[\dfrac{m^{5}}{n^{5}} +\dfrac{m^{4}}{n^{4}}+1]\\\\P(m,n)=n^5[x^{5}+x^{4}+1]

sumemos y restamos:

x^{2}

P(m,n)=n^5[x^{5}+x^{4}+1+x^{2}-x^{2}]\\\\P(m,n)=n^5[x^{5}-x^{2}+x^{4}+x^{2}+1]\\\\P(m,n)=n^5[x^{2}(x^{3}-1)+x^{4}+x^{2}+1]\\\\P(m,n)=n^5[x^{2}(x-1)(x^{2}+x+1)+ x^{4}+x^{2}+1]

recordemos la propiedad de argand

P(m,n)=n^5[x^{2}(x-1)(x^{2}+x+1)+ x^{4}+x^{2}+1]\\\\P(m,n)=n^5[x^{2}(x-1)(x^{2}+x+1)+(x^{2}+x+1)(x^{2}-x+1)]\\\\P(m,n)=n^5(x^{2}+x+1)(x^{2}(x-1)+(x^{2}-x+1))\\\\P(m,n)=n^5(x^{2}+x+1)(x^{3}+x+1)

pero:

\dfrac{m}{n}=x

P(m,n)=n^5(x^{2}+x+1)(x^{3}+x+1)\\\\P(m,n)=n^5[(\dfrac{m}{n}^{2})+\dfrac{m}{n}+1][(\dfrac{m}{n}^{3})+\dfrac{m}{n}+1]\\\\P(m,n)=n^5[\dfrac{m^{2}+mn+n^{2}}{n^{2}}][\dfrac{m^{3}+mn^{2} +n^{3}}{n^{3}}]

P(m,n)=(m^{2}+mn+n^{2})(m^{3}+mn^{2}+n^{3})

AUTOR SmithValdez

Viva ronaldooo

Otras preguntas