factorear estos números usando la multiplicación y escribir su resultado usando expresiones con potencia, en los casos que sea posible 144 - 1350 - 140.
Respuestas a la pregunta
Respuesta: huy yo tambien necesito eso
Explicación paso a paso:
ayuda plis
Respuesta:
Explicación paso a paso:
Los números al cubo crecen muy rápido. 13 = 1, 23 = 8, 33 = 27, 43 = 64, y 53 = 125.
Antes de ver la factorización de la suma de dos cubos, observemos los factores posibles.
Resulta que a3 + b3 puede factorizarse como (a + b)(a2 – ab + b2). Revisemos estos factores multiplicando.
¿(a + b)(a2 – ab + b2) = a3 + b3?
(a)(a2 – ab + b2) + (b)(a2 – ab +b2)
Aplica la propiedad distributiva.
(a3 – a2b + ab2) + (b)(a2 - ab + b2)
Multiplica por a.
(a3 – a2b + ab2) + (a2b – ab2 + b3)
Multiplica por b.
a3 – a2b + a2b + ab2 – ab2 + b3
Reorganiza los términos para combinar los términos semejantes.
a3 + b3
Simplifica
¿Viste eso? Cuatro de los términos se cancelaron, dejándonos con el (aparente) binomio simple a3 + b3. Entonces, los factores son correctos.
Puedes usar este patrón para factorizar binomios de la forma a3 + b3, también conocidos como “la suma de cubos