f(x)= √x-3
La preimagen de √(x)
Respuestas a la pregunta
Respuesta:
A modo de recapitulación, podemos definir función de la siguiente manera:
Una función es una correspondencia entre dos conjuntos A y B no vacíos, en la cual para todo elemento que pertenece al conjunto A existe un solo elemento, y solo uno, que pertenece al conjunto B al cual se le asocia o corresponde.
Para simbolizar que se ha establecido una función f , de un conjunto A en un conjunto B, se usa la siguiente notación:
f : A → B
Criterio de la función
En un sentido abstracto, calcular una función consiste en examinar la correspondencia general de “y” con respecto a “x” , expresado en la fórmula abstracta:
y = f(x)
Esta fórmula establece que la magnitud “y” está, de modo general, en función de “x”.
Ojo, que la magnitud “y” corresponde a lo que luego llamaremos “imagen”, y que depende del valor que se le asigne a “x” (que será la “preimagen”) en f(x).
La notación y = f (x) se lee “y” es una función de “x” o “y” es igual a f de x (esta notación no significa f por (x)). Obviamente en lugar de “x” e “y” hubiésemos podido emplear “variable”, y escribirlo así:
Variable dependiente = f (variable independiente)
Ejemplo 1Ejemplo 1
Si A = {1, 2, 3} y B = {2, 4, 6} y su correspondencia es el doble.
funcion_imagen_001
Entonces f(x) = 2x
En efecto
f(1) = 2 • 1 = 2
f(2) = 2 • 2 = 4
f(3) = 2 • 3 = 6
Tenemos
Dominio = {1, 2, 3}
Codominio = {2, 4, 6}
Ámbito (rango o recorrido) = {2, 4, 6}
Ejemplo 2
Si A = {1, 3, 5} y B = {3, 5, 7, 9, 11} y su correspondencia es el doble más uno.
funcion_imagen_002
Entonces f(x) = 2x + 1
En efecto:
f(1) = 2 • 1 + 1 = 3
f(3) = 2 • 3 + 1 = 7
f(5) = 2 • 5 + 1 = 11
Tenemos
Dominio = {1, 3, 5}
Codominio = {3, 5, 7, 9, 11}
Ámbito (rango o recorrido) = {3, 7, 11}
Explicación paso a paso: