Matemáticas, pregunta formulada por leidygira96, hace 1 año

. Expresar como fracción parcial la siguiente función racional y compruebe su solución
((4x-3))/((x+1)〖(x+2)〗^2 )

Respuestas a la pregunta

Contestado por Herminio
4
Dado que el denominador tiene un cero de primer grado y dos ceros repetidos la forma de hallar las fracciones parciales es:

f(x) = A / (x +1) + B / (x + 2) + C / (x + 2)²

Realizando la suma de fracciones e identificando el numerador de la función:

4 x - 3 = A (x + 2)² + B (x + 1) (x + 2) + C (x + 1)

Debe ser una identidad para todo valor de x

para x = - 2: - 11 = C (- 2 + 1); resulta C = 11

para x = - 1: - 7 = A (- 1 + 2)²; resulta A = - 7

Usamos cualquier valor para x

para x = 0; - 3 = - 7 (0 + 2)² + B (0 + 1) (0 + 2) + 11 (0 + 1)

Resulta B = 7

Verificación.

4 x - 3 = - 7 (x + 2)² + 7 (x + 1) (x + 2) + 11 (x + 1); quitamos paréntesis

4 x - 3 = - 7 (x² + 4 x + 4) + 7 (x² + 3 x + 2) + 11 x + 11

4 x - 3 = - 28 x - 28 + 21 x + 14 + 11 x + 11 = 4 x - 3

Saludos Herminio


Otras preguntas