explica en que casos coinciden la moda y la mediana
Respuestas a la pregunta
Para entender más a fondo de que caso de trata hay que conocer los siguientes conceptos estadísticos:
Media aritmética: es el centro de gravedad de los datos conociéndose como valor promedio. Éste se obtiene mediante la suma de todos los datos que luego deben ser divididos entre el número total.
Mediana: es el valor que ocupa el lugar central entre todos los valores del conjunto de datos, cuando estos están ordenados en forma creciente o decreciente, es decir corresponde al valor central en un punto del 50% de los datos.
Moda: es el valor de la variable con mayor frecuencia, es decir en un conjunto de datos es el dato que más veces se repite. En caso de existir más valores de la variable que tengan la mayor frecuencia, habría más de 1 moda. En caso de que no se repite ningún valor, no existe moda.
Ahora bien, el caso en que coinciden la moda, la mediana y la media recibe el nombre de distribución de frecuencia simétrica, de manera que lo datos se distribuyen de la misma forma, es decir tendremos que:
, son iguales
Respuesta:
Para entender más a fondo de que caso de trata hay que conocer los siguientes conceptos estadísticos:
Media aritmética: es el centro de gravedad de los datos conociéndose como valor promedio. Éste se obtiene mediante la suma de todos los datos que luego deben ser divididos entre el número total.
Mediana: es el valor que ocupa el lugar central entre todos los valores del conjunto de datos, cuando estos están ordenados en forma creciente o decreciente, es decir corresponde al valor central en un punto del 50% de los datos.
Moda: es el valor de la variable con mayor frecuencia, es decir en un conjunto de datos es el dato que más veces se repite. En caso de existir más valores de la variable que tengan la mayor frecuencia, habría más de 1 moda. En caso de que no se repite ningún valor, no existe moda.
Ahora bien, el caso en que coinciden la moda, la mediana y la media recibe el nombre de distribución de frecuencia simétrica, de manera que lo datos se distribuyen de la misma forma, es decir tendremos que:
(X = Me = Mo)(X=Me=Mo) , son iguales