Estadística y Cálculo, pregunta formulada por marigochagocha6997, hace 1 año

Evaluar las siguientes integrales impropias y grafiquelas en Geogebra para determinar si convergen o divergen ∫_0^1▒〖√((1+x)/(1-x)) dx〗

Respuestas a la pregunta

Contestado por mary24457181ozqyux
0

Respuesta:

f(x) = √((1+x)/(1-x)) dx

Calcularemos primero el dominio de la función de modo que tenemos las siguientes restricciones:

(1-x) ≠ 0

x≠1

además sabemos que

((1+x)/(1-x)) ≥ 0

1-x≥0

x≤1

Por lo tanto Df: Todos los reales mayores que 1.

por lo que tenemos una singularidad en x= 1:

Resolvemos la integral:

\int\limits^1-_0 {}\sqrt{\frac{1+x}{1-x}}  \, dx

...> Evaluamos de cero a uno por la izquierda debido a que en 1 hay una singularidad, lo que nos indica que 1- es un valor que se aproxima mucho a uno pero no es uno

I=Arctan( \sqrt{\frac{x+1}{1-x} } +(x-1) \frac{x+1}{1-x}

Evaluamos en los límites y tenemos:

I = π/2 +1

Por lo que la función converge.

Adjuntos:
Otras preguntas