establecer tres condiciones para que una ecuacion sea una funcion
Respuestas a la pregunta
Respuesta: Introducción
En el presente trabajo, se detallarán las características de las diferentes funciones matemáticas.
El principal objetivo es poder entender las funciones, su clasificación y así poder utilizarlas. También se definirá la recta numérica.
Definición de Función:
Una función, en matemáticas, es el término usado para indicar la relación o correspondencia entre dos o más cantidades. El término función fue usado por primera vez en 1637 por el matemático francés René Descartes, quien escribió: "Una variable es un símbolo que representa un número dentro de un conjunto de ello. Dos variables X y Y están asociadas de tal forma que al asignar un valor a X entonces, por alguna regla o correspondencia, se asigna automáticamente un valor a Y. La variable X, a la que se asignan libremente valores, se llama variable independiente, mientras que la variable Y, cuyos valores dependen de la X, se llama variables dependientes. Los valores permitidos de X constituyen el dominio de definición de la función y los valores que toma Y constituye su recorrido".
Para que una relación de un conjunto A en otro B sea función, debe cumplir dos condiciones, a saber:
→ Todo elemento del conjunto de partida A debe tener imagen.
La imagen de cada elemento x E A debe ser única. Es decir, ningún elemento del dominio puede ten
Explicación paso a paso: déjame una corona