Escribir V o F según corresponda y explique porque
G = { x/xεN x es múltiplo de 3}
5. A) 6 ε G B) 10 ε G C) 8 ε G D) 15 ε G
Respuestas a la pregunta
Respuesta:
Explicación paso a paso:
. TEÓRIA DE CONJUNTOS Profesor: Rubén Alva Cabrera
2. INDICE INTRODUCCIÓN RELACION DE PERTENENCIA DETERMINACION DE CONJUNTOS DIAGRAMAS DE VENN CONJUNTOS ESPECIALES RELACIONES ENTRE CONJUNTOS CONJUNTOS NUMÉRICOS UNION DE CONJUNTOS INTERSECCIÓN DE CONJUNTOS DIFERENCIA DE CONJUNTOS DIFERENCIA SIMÉTRICA COMPLEMENTO DE UN CONJUNTO PROBLEMAS
3. CONJUNTOS En matemáticas el concepto de conjunto es considerado primitivo y no se da una definición de este, por lo tanto la palabra CONJUNTO debe aceptarse lógicamente como un término no definido.
4. Un conjunto se puede entender como una colección o agrupación bien definida de objetos de cualquier clase. Los objetos que forman un conjunto son llamados miembros o elementos del conjunto. Ejemplo: En la figura adjunta tienes un Conjunto de Personas
5. NOTACIÓN Todo conjunto se escribe entre llaves { } y se le denota mediante letras mayúsculas A, B, C, ...,sus elementos se separan mediante punto y coma. Ejemplo: El conjunto de las letras del alfabeto; a, b, c, ..., x, y, z. se puede escribir así: L={ a; b; c; ...; x; y; z}
6. Ejemplo: A= {a;b;c;d;e} su cardinal n(A)= B= {x;x;x;y;y;z} su cardinal n(B)= En teoría de conjuntos no se acostumbra repetir los elementos por ejemplo: El conjunto {x; x; x; y; y; z } simplemente será { x; y; z }. Al número de elementos que tiene un conjunto Q se le llama CARDINAL DEL CONJUNTO y se le representa por n(Q). 5 3 INDICE
7. RELACION DE PERTENENCIA Para indicar que un elemento pertenece a un conjunto se usa el símbolo: Si un elemento no pertenece a un conjunto se usa el símbolo: Ejemplo: Sea M = {2;4;6;8;10} ... se lee 2 pertenece al conjunto M ... se lee 5 no pertenece al conjunto M INDICE
8. DETERMINACION DE CONJUNTOS I) POR EXTENSIÓN Hay dos formas de determinar un conjunto, por Extensión y por Comprensión Es aquella forma mediante la cual se indica cada uno de los elementos del conjunto. Ejemplos: A) El conjunto de los números pares mayores que 5 y menores que 20. A = { 6;8;10;12;14;16;18 } INDICE
9. B) El conjunto de números negativos impares mayores que -10. B = {-9;-7;-5;-3;-1 } II) POR COMPRENSIÓN Es aquella forma mediante la cual se da una propiedad que caracteriza a todos los elementos del conjunto. Ejemplo: se puede entender que el conjunto P esta formado por los números 0,1,2,3,4,5,6,7,8,9. P = { los números dígitos }
10. Otra forma de escribir es: P = { x / x = dígito } se lee “ P es el conjunto formado por los elementos x tal que x es un dígito “ Ejemplo: Expresar por extensión y por comprensión el conjunto de días de la semana. Por Extensión : D = { lunes; martes; miércoles; jueves; viernes; sábado; domingo } Por Comprensión : D = { x / x = día de la semana } INDICE
11. DIAGRAMAS DE VENN Los diagramas de Venn que se deben al filósofo inglés John Venn (1834-1883) sirven para representar conjuntos de manera gráfica mediante dibujos ó diagramas que pueden ser círculos, rectángulos, triángulos o cualquier curva cerrada. A M T 7 2 3 6 9 a e i o u (1;3) (7;6) (2;4) (5;8) 8 4 1 5 INDICE
12. A = o A = { } se lee: “A es el conjunto vacío” o “A es el conjunto nulo “ CONJUNTOS ESPECIALES CONJUNTO VACÍO Es un conjunto que no tiene elementos, también se le llama conjunto nulo. Generalmente se le representa por los símbolos: o { } Ejemplos: M = { números mayores que 9 y menores que 5 } P = { x / }
13. CONJUNTO UNITARIO Es el conjunto que tiene un solo elemento. Ejemplos: F = { x / 2x + 6 = 0 } G = CONJUNTO FINITO Es el conjunto con limitado número de elementos. Ejemplos: E = { x / x es un número impar positivo menor que 10 } N = { x / x 2 = 4 } ;
14. CONJUNTO INFINITO Es el conjunto con ilimitado número de elementos. Ejemplos: R = { x / x < 6 } S = { x / x es un número par } CONJUNTO UNIVERSAL Es un conjunto referencial que contiene a todos los elementos de una situación particular, generalmente se le representa por la letra U Ejemplo: El universo o conjunto universal ; de todos los números es el conjunto de los NÚMEROS COMPLEJOS. INDICE
15. RELACIONES ENTRE CONJUNTOS INCLUSIÓN Un conjunto A esta incluido en otro conjunto B ,sí y sólo sí, todo elemento de A es también elemento de B NOTACIÓN : Se lee : A esta incluido en B, A es subconjunto de B, A esta contenido en B , A es parte de B. REPRESENTACIÓN GRÁFICA : B A