Enumera y define cada una de la ramas en la que se divide las matemáticas
Respuestas a la pregunta
Respuesta:
Aritmética
La aritmética o teoría de números fue históricamente una de las primeras áreas de las matemáticas. Actualmente sigue siendo una fuente importante de problemas matemáticos no resueltos.
Teoría de números
La teoría del número se refiere tradicionalmente a las características de números enteros. Más recientemente, ha venido ser referido a clases más anchas de los problemas que se han presentado naturalmente del estudio de números enteros.
Álgebra
El estudio de la matemática comienza con los números; primero los números naturales y los enteros y sus operaciones aritméticas, que se clasificarían dentro del álgebra elemental.
Teoría del orden
Cualquier conjunto de números reales se puede ordenar en forma ascendente. La teoría del orden amplía esta idea a los sistemas en general. Incluye nociones como retículos y estructuras algebraicas ordenadas.
Estructuras algebraicas
Dado un conjunto, diversas maneras de combinar o de relacionar a miembros de eso fijaron pueden ser definidas. Si éstos obedecen ciertas reglas, entonces un detalle estructura algebraica se forma. Álgebra universal es el estudio más formal de estas estructuras y sistemas.
Teoría de cuerpos y polinomios
La teoría de cuerpos estudia las características de los cuerpos algebraicos. Un cuerpo es una entidad matemática para la cual la adición, la substracción, la multiplicación y la división están bien definido. Un polinomio es una expresión en la cual se combinan las constantes y las variables usando solamente la adición, la substracción, y la multiplicación.
Anillos conmutativos y álgebras conmutativas
En teoría de anillos (una rama del álgebra abstracta), un anillo conmutativo es un anillo en el cual la operación de multiplicación obedece la ley de conmutatividad.
Análisis
Dentro del mundo de las matemáticas, el análisis está centrado en el cambio: índices del cambio, cambio acumulado, y cosas múltiples que cambian concerniente (o independientemente de) a una otra.
Geometría y topología
Geometría se ocupa de relaciones espaciales, usando calidades fundamentales o axiomas. Tales axiomas se pueden utilizar conjuntamente con las definiciones matemáticas para los puntos, las líneas rectas, las curvas, las superficies, y los sólidos para dibujar conclusiones lógicas. Vea también Lista de los asuntos de la geometría
Geometría convexa y geometría discreta
Incluye el estudio de objetos por ejemplo polytopes y poliedros. Vea también Lista de los asuntos de la convexidad
Geometría combinatoria o discreta
El estudio de objetos geométricos y características que son discreto o combinatorio, por su naturaleza o por su representación. Incluye el estudio de formas tales como Sólidos Platonic y la noción de tessellation.
Geometría diferencial
El estudio de la geometría usando cálculo, y se relaciona muy de cerca con topología diferenciada. Cubre las áreas tales como Geometría de Riemannian, curvatura y geometría diferenciada de curvas. Vea también glosario de la geometría y de la topología diferenciadas.
Geometría algebraica
A dada polinómico de dos verdaderos variables, entonces los puntos en un plano donde está forma esa función cero de la voluntad a la curva. curva algebraica amplía esta noción a los polinomios sobre a campo en un número dado de variables. La geometría algebraica se puede ver como el estudio de estas curvas. Vea también lista de los asuntos algebraicos de la geometría y lista de superficies algebraicas.
Topología
Se ocupa de las características de una figura que no cambian cuando la figura es deformada continuamente. Las áreas principales son topología determinada del punto (o topología general), topología algebraica, y la topología de múltiples, definido abajo.
Estadística
Estudia la variabilidad, así como el proceso aleatorio que la genera siguiendo leyes de probabilidad. Vea también lista de asuntos estadísticos.