Encuentre todos los valores de x que satisfagan simultáneamente ambas desigualdades:
3x+7>1 y 2x+1<-4
Respuestas a la pregunta
Contestado por
0
Respuesta:
3x + 7 > 1 [Inecaución (1)]
2x + 1 < -4 [Inecaución (2)]
(1):
3x + 7 > 1
3x > 1 - 7
3x > -6
x > -2
(2)
2x + 1 < -4
2x < -4 - 1
2x < -5
x < -5/2
Tenemos, entonces, una acotación superior y una inferior de 'x'. Esto quiere decir que podemos decir "x es mayor que... y menor que...", por lo tanto queda una desigualdad doble que todos los valores de 'x' entre sus cotas cumplen.
-2 < x < -5/2
-4/2 < x < -5/2
Multiplicamos ambos lados por '2'
-4 < 2x < -5
Multiplicamos por -1 e invertimos la ecuación:
4 > -2x > 5
Tenemos, entonces, que '-2x' tiene que ser un número menor que 4, pero mayor que 5, es decir, un número que sencillamente NO existe. Por lo tanto, 'x' tampoco existe, no existe número que cumpla ambas inecauciones simultáneamente. Saludos! :)
Otras preguntas
Informática,
hace 20 días
Ciencias Sociales,
hace 20 días
Matemáticas,
hace 1 mes
Castellano,
hace 1 mes
Historia,
hace 8 meses
Alemán,
hace 8 meses