Matemáticas, pregunta formulada por erickrojas1216ozgsm0, hace 1 año

Encuentre Para la función ℎ() = ln(2t + 4):
1. Determinar las características de la función logarítmica
2. Identificar el dominio de una función logarítmica
3. Encontrar el ámbito de una función logarítmica
4. Determinar la intersección con los ejes de una función Logarítmica
5. Graficar una función logarítmica


maxzriver: He resuelto la que he entendido detalla más por favor

Respuestas a la pregunta

Contestado por maxzriver
2
ℎ(t) = ln(2t + 4):

1) El dominio de una función logarítmica son los números reales positivos:    Dom(f) = (0. + ∞) .

0<2t + 4<+ ∞.

2) Su recorrido es R:    Im(f) = R .


3) Son funciones continuas.


4) Como   loga1 = 0 , la función siempre pasa por el punto   (1, 0) .


    La función corta el eje X en el punto   (1, 0)   y no corta el eje Y.


5) Como   logaa = 1 , la función siempre pasa por el punto   (a, 1) .


6) Si   a > 1   la función es creciente.


    Si   0 < a < 1   la función es decreciente.


7) Son convexas si   a > 1 .


    Son concavas si   0 < a < 1 .


8) El eje Y es una asíntota vertical.

Si  a > 1 : 

Cuando x → 0 + , entonces log a x → - ∞

Si  0 < a < 1 :

Cuando x → 0 + , entonces log a x → + ∞

maxzriver: falta completar y analizar
maxzriver: 0<2t + 4<+ ∞...................-4<2t<+ ∞.....................-2<t<+ ∞
Otras preguntas