Matemáticas, pregunta formulada por mmiranda, hace 1 año

Encontrar los lados del rectángulo cuyo perímetro es 140cm y su área es 1200cm2

Respuestas a la pregunta

Contestado por luisariasvera
1

4 \times a = 140cm. \\ a =  \frac{140cm.}{4}   \\ a = 35cm.\\ {a}^{2}  = 1200 {cm.}^{2}  \\ a =   \sqrt{1200 {cm.}^{2} }   \\ a = 35cm
Contestado por Hekady
4

El área de un rectángulo se define como:

área = largo * ancho

1200 cm² = l * a

Se sabe a su vez, que el perímetro (suma de todos sus lados) es igual a 140 cm:

140 cm = 2 * (l + a)

70 cm = l + a

Despejamos el largo:

l = 70 - a

Sustituimos en la primera relación:

1200 = a * (70 - a)

1200 = 70a - a²

Se forma ecuación de 2do grado y se obtiene:

-a² + 70a - 1200 = 0

Con: a = -1 / b = 70 / c = -1200

\frac{-70+\sqrt{ 70^{2} -4*-1*-1200} }{2*-1}=30cm

\frac{-70-\sqrt{ 70^{2} -4*-1*-1200} }{2*-1}=40cm

Se obtiene: a = 40 cm o a = 30 cm (ambas soluciones son válidas)

Escogemos a = 30 cm, por lo que el largo es:

l = 70 - 30

l = 40 cm

Es decir, el ancho es de 30 cm y el largo de 40 cm

Otras preguntas