Matemáticas, pregunta formulada por Lulu1340, hace 1 año

Encontrar la ecuación ordinaria y ecuación general de la siguiente parábola y²=12x

Respuestas a la pregunta

Contestado por KingJoel
8

Respuesta:

Ecuación ordinaria de la parábola:

 {(y - k)}^{2}  = 4p(x - h)

Como no nos dicen el vértice (h;k) asumiremos que es (0;0) osea en el origen de coordenadas :

 {(y - 0)}^{2}  = 4p(x - 0) \\  {y}^{2}  = 4px

Averiguamos el valor de p para la ecuación

 {y}^{2}  = 4px \\  {y}^{2}  = 4(3)x =  {y}^{2}  = 12x

Parámetro p = 3

Ecuación ordinaria

 {y}^{2}  = 4(3)x

Ecuación general

Para obtener la ecuación general pasamos el 12x a restar:

 {y}^{2}  = 12x \\  {y}^{2}  - 12x = 0

Adjuntos:
Otras preguntas