Matemáticas, pregunta formulada por garciaeduardo5549, hace 1 año

encontrar el decimo termino de una sucesion aritmetica con diferencia igual a 20 tal que la suma de los primeros dos sea 1

Respuestas a la pregunta

Contestado por MATH2014
87

Respuesta:

Explicación paso a paso:

a10 = ?

r = 20

a1 más a2 = 1

a1 más a1 más r = 1

2a1 más 20 = 1

a1 = -19 / 2

a10 = a1 más 9.r

-19 / 2 más 9.20

= 341 / 2

Contestado por mafernanda1008
6

Los primeros 10 términos de la sucesión aritmética son -9,5; 10,5; 30,5; 50,5; 70,5; 90,5; 110,5; 130,5; 150,5; 170,5

Una progresión aritmética es una sucesión en la que si restamos dos términos consecutivos de la misma esta diferencia es constante, es decir cada termino se obtiene sumando el anterior por una constante llamada diferencia denotada con la letra "d".

El nesimo termino de una progresión aritmética que comienza en a1 se obtiene con la ecuación:

an = a1 + d*(n-1)

Tenemos que d = 20 y:

a2 = a1 + 20 ⇒ 1. a2 - a1 = 20

Queremos que 2. a1 + a2 = 1

Sumamos las ecuaciones 1 y 2:

2a2 = 21

a2 = 21/2 = 10,5

Sustituimos en 1:

10,5 - a1 = 20

a1 = 10,5 - 20 = -9.5

Entonces el primer término es -9.5 y los siguientes se obtiene sumando 20 que serán:

-9,5; 10,5; 30,5; 50,5; 70,5; 90,5; 110,5; 130,5; 150,5; 170,5

Puedes visitar: https://brainly.lat/tarea/33937983

Adjuntos:
Otras preguntas