Matemáticas, pregunta formulada por camito99p7rlcj, hace 1 año

encontrar dos numeros enteros consecutivos tales que la diferencia entre la mitad del primero y la tercera parte del segundo sea igual a la diferencia entre la cuarta parte del segundo y la quinta parte del primero

Respuestas a la pregunta

Contestado por MichaelSpymore1
3
Con los datos proporcionados vamos a establecer las ecuaciones que nos permitan resolver las incógnitas.

Llamemos M al primer número y N al segundo número.

Sabemos que N = M+1 porque son consecutivos

Nos dicen que M/2 - N/3 = N/4 - M/5

Sustituimos el valor de N y tenemos  M/2 - (M+1)/3 = (M+1)/4 -M/5

Operando  M/2 -M/3 -1/3 = M/4 +1/4 -M/5

Agrupamos fracciones con variables a la izquierda y constantes a la derecha

M/2 - M/3 - M/4 + M/5 = 1/4 + 1/3

Sacamos m.c.m.   a la izquierda = 5*4*3=60  y a la derecha = 3*4=12

Entonces (30M - 20M - 15M + 12M)/60 = (3+4)/12

7M/60 = 7/12

Despejando M = 7*60/12*7 = 420/84 = 5

Entonces N = M+1 = 5+1=6


RESPUESTA 5 y 6


Verificación 5/2 - 6/3 = 6/4 - 5/5

5/2 - 2 = 3/2 -1

5/2 -3/2 = -1 + 2

2/2 = 1

1=1 Quedando comprobado que 5 y 6 cumplen las condiciones

Suerte con vuestras tareas

Michael Spymore
Otras preguntas