En una progresión aritmética cuyo primer término vale 52 y la diferencia -3, ¿qué posición ocupa el primer término negativo? ¿Cuál es ese término?
Respuestas a la pregunta
En las progresiones aritméticas, el valor de los términos va aumentando o disminuyendo según el valor de la diferencia entre dos términos sucesivos.
En este ejercicio, la diferencia es negativa y ello da lugar a que el valor de los términos vaya decreciendo.
Así tenemos que:
- a₁ = 52
- a₂ = 52 + (-3) = 49
- a₃ = 49 + (-3) = 46 ... etc ...
Si nos pide el valor del primer término cuyo signo sea negativo, la forma más directa, a mi entender, de saberlo es DIVIDIR el primer término entre esa diferencia y así sabremos cuántos términos tenemos con signo positivo.
52 ÷ 3 = 17
A esos 17 hay que sumar otro término que es justamente el primero (52) que no está incluido en el resultado de la división y tenemos un total de 18 términos con signo positivo.
Respuesta a la 1ª cuestión:
El término que ocupa el lugar nº 19 será el primero con signo negativo.
Para saber el valor de ese término se acude a la fórmula general para este tipo de progresiones:
aₙ = a₁ + (n-1) × d
Tenemos los datos:
- a₁ = 52
- d = -3
- n = 19
- aₙ = a₁₉ (es lo que nos piden calcular)
Sustituyo y resuelvo:
a₁₉ = 52 + (19-1) × (-3)
a₁₉ = 52 - 54 = -2