Matemáticas, pregunta formulada por 09dcm, hace 1 año

En una progresión aritmética a1=2 y d=3. Cuantos términos deben de tomarse para que la suma sea 155?
Procedimiento

Respuestas a la pregunta

Contestado por mafernanda1008
4

Deben tomarse 10 términos para que la suma de los términos sea igual a 10

Una progresión aritmética es una sucesión en la que la diferencia de un número y su anterior es constante, también lo podemos ver como que el termino de una sucesión se consigue sumando la misma por una constante denominada d.

El nesimo termino de una progresión aritmética que comienza en a1 y de diferencia d, es:

an= a1+d(n-1)

La suma de los n primeros términos de una progresión aritmética es:

Sn = (a1+an)*n/2

En este caso: la diferencia es 3 y a1 = 2, Sn = 155

155 = (2+an)*n/2

155 = (2+a1+d(n-1))*n/2

155 = (2+2+3*(n-1))*n/2

155 = (4+3n-3)*n/2

155*2 = (3n + 1)*n

310 = 3n² + n

3n² + n - 310 = 0

Si buscamos las raices n = -31/3 ó n = 10, como n debe ser entero y positivo entonces n = 10


Pulis2002: Como sacamos las raices se eso
Otras preguntas