Matemáticas, pregunta formulada por cogollito63281, hace 8 meses

En una función de segundo grado de la forma: f(x) = ax2 + bx + c, donde a ≠ 0, para que f(x) tenga un valor máximo, se determinan las coordenadas de sus vértices, en este caso x = -b 2a . Calcula el valor de x para que f(x) = x(16 - 2x)300 tenga el máximo volumen.

Respuestas a la pregunta

Contestado por zamzze
46

Función cuadrática:

f(x) = x(16 - 2x)300

f(x) = -600x^2 + 4800x

Respuesta:

x = -b / 2a

x = -4800 / 2(-600)

x = -4800 / -1200

x = 4

Explicación paso a paso:

El término a = -600 y el término b = 4800 lo sacamos de su respectiva posición de la función cuadrática y lo utilizamos para obtener el máximo valor.


pablitodelarocaa: aún no me queda claro de dónde sale el 4800 y el 600 :'))))
pablitodelarocaa: me ayudan?
anelhialanw: pues creo q es porque lo multiplica 300×2 y 300×16 u.u
Contestado por FR4S13R
22

Respuesta:

ahí Tenes pero tarde  

Adjuntos:
Otras preguntas