En una fábrica de circuitos electrónicos, se afirma que la proporción de
unidades defectuosas de cierto componente que ésta produce es del 5%. Un
comprador de estos componentes revisa 15 unidades seleccionadas al azar.
¿Cuál es la probabilidad de que haya encontrado 5 defectuosas? ¿Cuál es la
probabilidad que por lo menos tres sean buenas? ¿todas buenas? ¿todas
defectuosas?
Respuestas a la pregunta
La probabilidad de que haya encontrado 5 defectuosas es de 0,0005619
Explicación:
Probabilidad Binomial:
P(x=k) = Cn,k p∧k*q∧(n-k)
En una fábrica de circuitos electrónicos, se afirma que la proporción de unidades defectuosas de cierto componente es:
p = 0,05
q = 0,95
n= 15
¿Cuál es la probabilidad de que haya encontrado 5 defectuosas?
P(x= 5) = C15,5 (0,05)⁵ ( 0,95)¹⁰
P(x= 5) = 0,0005619
¿Cuál es la probabilidad que por lo menos tres sean buenas?
P(x≤3)= P(x=0)+P(x= 1)+P(x=2) +P(x=3)
P(x=0) = C15,0 (0,95)⁰ (0,05)¹⁵= 0,0000000000000000004577
P(x = 1)= C15,1 (0,95)¹ (0,05)¹⁴ = 0.0000000000000000086975
P(x=2) = C15,2 (0,95)² (0,05)¹³ = 0.00000000000000115676
P(x = 3)= C15,3 (0,95)³ (0,05)¹²= 0.00000000000009524
¿todas defectuosas?
P (x=15) = C15,15 (0,05)¹⁵ (0,95)⁰ = 0.000000000000000000028991