En una carrera participan 3 caballos, A; B y C que deben recorrer 1800 m. El caballo A llega a la meta con una ventaja de 60 m sobre B y 8 segundos antes que C y B luego 2 segundos antes que C. ¿Cuánto tiempo tardó en la carrera el caballo B?
Respuestas a la pregunta
Respuesta:
180 segundos ; a una velocidad de 10 m/s
Explicación paso a paso:
Si:
Va = velocidad del caballo A
Vb = velocidad del caballo B
Vc = velocidad del caballo C
ta = tiempo del caballo A en recorrer 1800m
tb = tiempo del caballo B en recorrer 1800m
tc = tiempo del caballo C en recorrer 1800m
Aplicando d = v . t:
Va . ta = 1800
Vb . tb = 1800 (4)
Vc . tc = 1800 (1)
Y también tenemos que:
tc + 8 = ta → tc = ta -8 (2)
tc + 2 = tb → tc = tb - 2 (3)
Reemplazamos 2 y 3 en 1:
Vc (ta - 8) = 1800
Vc (tb - 2) = 1800
Igualamos:
Vc(ta -8) = Vc(tb - 2)
Simplificamos Vc:
ta - 8 = tb - 2
ta - tb = 6
Entonces sabemos que A llego 6 segundos antes que B y que le saco una ventaja de 60 m :
Tenemos:
dx = 60 m
tx = 6 s
Vb = ?
Hallamos Vb (que siempre va ser constante):
dx = Vb . tx
60 = Vb . 6
Vb = 10 m/s
Nos pide el tiempo de b es de decir tb
Reemplazamos la velocidad hallada en 4:
Vb . tb = 1800
10 . tb = 1800
tb = 180 segundos
PSDT(he encontrado este problema en un libro y al parecer esta mal escrito ya que las respuestas estan en m/s y te pide tiempo para lo cual deberian de estar en segundos y no en m/s pero bueno)
Respuesta:
8 - 2 = 6s
luego el tiempo que tardó será: