En un triángulo rectángulo el seno de uno de los ángulos Agudos es 0,8, halle el perímetro de dicho ángulo si su área es 6 metros cuadrados.
Respuestas a la pregunta
Respuesta:
Explicación paso a paso:
1De un triángulo rectángulo {ABC}, se conocen {a = 415 \ m} y {b = 280 \ m}. Resolver el triángulo.
Solución
2De un triángulo rectángulo {ABC}, se conocen {b = 33 \, m} y {c = 21 \, m}. Resolver el triángulo.
Solución
3De un triángulo rectángulo {ABC}, se conocen {a = 45 \ m} y {B = 22^o}. Resolver el triángulo.
Solución
4De un triángulo rectángulo {ABC}, se conocen {b = 5.2 \ m} y {B = 37^o}. Resolver el triángulo
Solución
5Un dirigible que está volando a {800 \ m} de altura, distingue un pueblo con un ángulo de depresión de {12^o}. ¿A qué distancia del pueblo se halla?
Solución
6Hallar el radio de una circunferencia sabiendo que una cuerda de {24.6 \ cm} tiene como arco correspondiente uno de {70^o}.
Solución
7Calcular el área de una parcela triangular, sabiendo que dos de sus lados miden {80 \ m} y {130 \ m}, y forman entre ellos un ángulo de {70^o}.
Solución
8Calcula la altura de un árbol, sabiendo que desde un punto del terreno se observa su copa bajo un ángulo de {30^o} y si nos acercamos {10 \ m}, bajo un ángulo de {60^o}.
Solución
9La longitud del lado de un octógono regular es {12 \ m}. Hallar los radios de la circunferencia inscrita y circunscrita.
Solución
10Calcular la longitud del lado y de la apotema de un octógono regular inscrito en una circunferencia de {49} centímetros de radio.
Solución
11Tres pueblos A, B y C están unidos por carreteras. La distancia de A a C es {6} km y la de B a C es {9} km. El ángulo que forman estas carreteras es {120^o}. ¿Cuánto distan A y B?