En un triángulo acutángulo la distancia del circuncentro al ortocentro es 24 . Calcular la distancia del ortocentro al baricentro del triángulo mencionado
Respuestas a la pregunta
Respuesta:
- El baricentro de un triángulo es el punto donde se cruzan los segmentos que van desde cada vértice del triangulo al punto medio de su lado opuesto, estos segmentos representan las medianas de cada vértice.
- Por otro lado, la distancia entre el baricentro (b) y el vértice representa 2/3 de la mediana, significa que desde el baricentro a la hipotenusa la distancia es 1/3 de la mediana.
- En el triangulo rectángulo ABC descrito en el enunciado la mediana del vértice B (ángulo recto) esta representada por el segmento BM en la figura anexa y el punto b representa el baricentro.
- Si la distancia bM representa 1/3 del segmento BM, que es igual a 12 m y Bb es 2/3 de BM, entonces BM mide:
1/3 BM = 12 m ⇒ BM = 12 m x 3 ⇒ BM = 36 m
- La altura del triángulo ABC, esta dada por el segmento BH que forma un ángulo recto con el lado opuesto al vértice B.
- Entre el segmento BH (altura del vértice B) y el segmento BM (mediana del vertice B), se forma el triangulo rectángulo BHM, con ángulo recto en B. Para determinar la longitud de la altura BH, aplicamos el teorema de pitagoras:
BM² = BH² + HM² ⇒ BH =√(BM² - HM²
Explicación paso a paso: