En los ejercicios dados a continuación determina cuáles se resuelven aplicando la conjugada y soluciónelos
Respuestas a la pregunta
Los límites proporcionados se resuelven a continuación :
Lim (√x -2) / (x+2 ) = (√2 -2)/( 2+2 ) = (√2 -2)/4
x→2
lim ( x -3 ) /⁵√( x-3) = ( 3 -3 ) /⁵√( 3-3) = 0/0
x→3
lim ( x -3 ) /⁵√( x-3) = ( x -3 ) /⁵√( x-3) * ⁵√( x-3)⁴/⁵√( x-3)⁴
x→3
lim ( x-3 )*⁵√( x-3)⁴/( x-3 ) = lim ⁵√( x-3)⁴ = ⁵√( 3-3)⁴ = 0
x→3 x→3
lim ( x -4 ) /( x -√x - 2 ) = ( 4-4 ) /(4 -√4 -2 ) = 0/0
x→4
lim ( x -4 ) /( x -√x - 2 )*( x +√x - 2 ) /( x +√x - 2 ) =
x→4
lim ( x- 4) *( x-2+√x )/ [ (x-2)²- (√x)²]= lim ( x-4)*( x -2 + √x )/ [x²-4x +4 - x )
x→4 x→4
= lim ( x-4)* ( x -2 + √x ) / (x²-5x+4 ) = lim ( x-4)* ( x -2 + √x ) /( x-4)*(x-1)
x→4 x→4
= lim ( x -2 + √x ) /(x-1) = ( 4 -2 +√4 )/(4-1 ) = 4/3
x→4
lim ∛x +1 /(x+1) = ∛-1 + 1 /(-1+1) = 0/0
x→-1
lim ( x+1 )*( ∛x² -∛x + 1)/(x+1)=lim ( ∛x² -∛x +1) = ∛(-1)² -∛-1 + 1) = ( 1 +1+1=3
x → -1 x→-1
lim 2√x -4 /√2(x-2) -2 = 2√4-4 /√2(4-2) -2 = 0/0
x→4
lim ( 2√x -4)*( 2√x +4 ) * ( √( 2(x-2) + 2) /(√2(x-2) -2) *( 2√x +4) *(2(x-2) +2)
x→4
lim 4*( x-4)*(√2(x-2) +2 ) /2(x-4)*(2√x +4) = lim 2*( √2(x-2) +2 )/(2√x +4)
x→4 x→4
= 2* ( √2( 4-2) + 2 ) /( 2√4 + 4 ) = 2* 4/8 = 1
lim ( √( x²+ 1) - x ) = ∞ - ∞
x→∞
lim ( √( x²+ 1) - x ) * ( √( x²+ 1) + x ) /(√( x²+ 1) + x) =
x→∞
lim ( x²+1 -x²)/( √( x²+ 1 ) + x ) = lim 1/( √( x²+ 1) + x ) =
x→∞ x→∞
= 1/(√( ∞²+ 1) + ∞ ) = 1/∞ = 0