en lo alto de una torre de 50 m situada en una isla se observa un barco en altamar desde un angulo de 30 grados. calcula la distancia de la torre hasta el barco
Me ayudan con eso porfa
Respuestas a la pregunta
Respuesta:
Explicación paso a paso:
La distancia que separa al barco del faro, durante la segunda observación es de 170 metros , y la altura del faro es de 469,51 metros.
Análisis matemático
Lo primero que debemos hacer es realizar una ilustración del enunciado (ver imágenes adjuntas), obteniendo un triangulo rectángulo, por lo que aplicaremos identidades trigonométricas y Teorema de Pitagoras para resolverlo:
Para la primera observación, nos dicen que el barco se va acercando al Faro a una distancia desconocida superior a 500 metros, usamos la relación de la Tangente:
Tangente = Cateto Opuesto / Cateto Adyacente
Tan(35°) = Altura Faro / (x + 500 m)
Tan(35°) (x + 500 m) = Altura Faro
0,70(x + 500 m) = Altura Faro
0,70x + 350 = Altura Faro (Ecuación 1)
Para la segunda observación, el barco se ha movido hasta estar a 500 metros del faro, el ángulo de depresión cambió a 70° y ahora volvemos a aplicar la relación de Tangente:
Tangente = Cateto Opuesto / Cateto Adyacente
Tan(70°) = Altura Faro / x
Tan(70°) = Altura Faro / x
Altura Faro = x. Tan(70°)
Altura Faro = 2,75x (Ecuación 2)
Igualamos las ecuaciones 1 y 2:
0,70x + 350 = 2,75x
2,75x - 0,70x = 350
2,05x = 350
x = 170 metros
Sustituimos el valor de X en la Ecuación 2:
Altura Faro = 2,75.170
Altura Faro = 469,51 metros
Sigue aprendiendo sobre estos ejercicios en:
Desde un faro puesto a 40m sobre el nivel del mar se observa un barco con un angulo de depresión de 55 grados ¿A que distancia se halla el faro del barco?