En la siguiente formula física:Hallar las dimensiones de "R" . R=V/I y que V =W/q V=Potencial eléctrico; I=intensidad de corriente eléctrica;W=Trabajo del campo eléctrico ;q=carga eléctrica.
Respuestas a la pregunta
Respuesta:
R = M*L^2*T^(-3)*I^(-2)
Explicación:
R = V / I ..ecuacion 1
V = W / q
V = F*d / I*t
V = m*a*d / I*t
V = M*L*T^(-2)*L / I*T
V = M*L^2*T^(-2) / I*T
V = M*L^2*T^(-3)*I^(-1) ... ecuacion 2
Reemplazamos el valor de ecuacion 2 en la ecuacion 1:
R = V / I
R = M*L^2*T^(-3)*I^(-1) / I
R = M*L^2*T^(-3)*I^(-2)
mediante una relación entre la longitud y el tiempo.2. EL SISTEMA INTERNACIONAL DE UNIDADES (SI) Es un conjunto de unidades de magnitudes fundamentales a partir del cual se debe expresar cualquier unidad de una magnitud derivada. Este fue un acuerdo común tomado por la mayor parte del mundo el 14 de octubre de 1960 en Francia. Nombre Dimensión Unidad Básica Símbolo Longitud L metro m Masa M kilogramo kg Tiempo T segundo s Temperatura termodinámica Θ kelvin K Intensidad de corriente I ampere A eléctrica candela Intensidad luminosa J cd Cantidad de sustancia N mol mol3. FÓRMULA DIMENSIONAL La fórmula dimensional de una magnitud dada, es una fórmula que muestra que operaciones de multiplicación o división hay que efectuar con las magnitudes físicas fundamentales para obtener la magnitud derivada. Notación: sea X la magnitud física, entonces: [ X ] : se lee fórmula dimensional de la magnitud física X. Ejemplos:Lic.
2. DIMENSIONES (Coquito va a la Universidad) L Velocidad : [V ] = = L.T −1 T L.T −1 Aceleracion : [ A] = = L.T −2 T4. DIMENSIÓN La dimensión indica las veces en que varía la magnitud física fundamental en una magnitud derivada. [ X ] = La .M b .T c .Θd .I e .J f .N g La fórmula dimensional está dada en función de siete magnitudes fundamentales. Así mismo los exponentes a, b, c, d, e, f y g se llaman dimensiones.5. MAGNITUDES FÍSICAS DERIVADAS Son aquellas magnitudes que se expresan en función de las magnitudes físicas fundamentales. Desplazamiento lineal L Desplazamiento angular 1 Frecuencia T–1 Energía cinética M.L2.T–2 Energía potencial gravitatoria M.L2.T–2 Cantidad de carga eléctrica I.T Peso específico M.L–2.T–26. REGLAS DIMENSIONALES a) Si el valor numérico de la magnitud X es igual al producto (cociente) de los valores numéricos de las magnitudes A y B, entonces la dimensión de X será igual al producto (cociente) de las dimensiones A y B Si: X =A.B [X] = [A] . [B] Si: X = A [X