En el gráfico, si BM=MC, AC=40,PM=8. Calcule AB.
Respuestas a la pregunta
Respuesta:
Explicación paso a paso:
Ya que no puedo escribir el símbolo de alfa utilizaré "&"
-Primero definimos el ángulo <ABP=180-90-&=(90-&)
Ahora extendemos la recta BP hasta el punto de intersección con AC (punto T), tal como se muestra en la imagen anexa...
-Ahora ya que el ángulo <APT es suplementario es igual a 90°, por tanto en el ángulo
<ATP=180-90-&=(90-&) entonces
<ABP=<ATP y por tanto los lados
AB y AT son iguales.
-Ahora por el criterio LAL los triángulos (ABP) y (APT) son iguales.
-Entonces los lados BP y PT también son iguales, y ya que BM=MC la recta PM toca los puntos medios de las rectas BT y BC respectivamente, debido a lo anterior
TC=2(PM)=2(8)=16
-Con lo anterior tenemos que:
AC=AT+TC
pero AC=40 ,AT=AB y TC=16 por tanto:
40=AB+16
40-16=AB
24=AB.