Matemáticas, pregunta formulada por uscakeyla40, hace 3 meses

En cada ítem se dan los tres primeros
términos de una progresión aritmética
(am). Halla el término general de dicha
progresión, verifica su resultado con el
tercer término, y calcula el término am
que se indica.
c) 1 – 2 , 1, 1 + 2 , … , a8 =
d) 1/2, 1, 3/2, … , a20 =

Respuestas a la pregunta

Contestado por togima
1

Progresión aritmética c)

  • 1 - 2 = -1   el primer término es -1
  • 1  es el segundo término
  • 1 + 2 = 3   el tercer término es 3

Según esos resultados tenemos que la diferencia entre términos consecutivos es 2 así que los datos son:

1º término  a₁ = -1

Diferencia  d = 2

Acudo a la fórmula general que identifica a cualquier progresión aritmética que dice:   aₙ = a₁ + (n-1) × d

Sustituyo los datos de arriba:

aₙ = (-1) + (n-1) × 2

aₙ = -1 +2n -2

aₙ = 2n - 3     (término general)

Conocido el término general, solo hay que sustituir "n" por el nº de orden o lugar que ocupa en la progresión

Por tanto, el término a₈  está en el lugar nº 8 y lo sustituyo:

aₙ = 2×8 - 3  =  16 - 3  = 13  es el valor del octavo término.

Este ejercicio te sirve como modelo para hacer el d)

Ahí verás que la diferencia entre términos consecutivos es 1/2 ya que

  • 1º término = 1/2
  • 2º término = 1/2 + 1/2 = 2/2 = 1
  • 3º término = 2/2 + 1/2 = 3/2

Así pues, conoces el valor del 1º término (1/2) y el valor de la diferencia entre términos consecutivos  (d = 1/2)

Haz lo mismo que he hecho yo antes para obtener el término general y luego el valor del término a₂₀

Contestado por cristhiancordova2006
2

espero que les ayude :)

a) 37

b) 50

c)

6 \sqrt{2 + 1}

d) 10

Adjuntos:
Otras preguntas